	TC .		Scho	aikteds of of Ar	space.org rchitec
		School of En	gineer	ring & I	Techno
TC KALSEKAR TECHNICAL CAMPUS		School of Pharm			
	Knowledge Resource & Rel	lay Centre (K	RRC)	1	1
AIKT	C/KRRC/SoET/ACKN/QUES/2019-20/	D	ate:	15/01	2020
Schoo	l: <u>SoET-CBSGS</u> Branch: <u>ALL</u>	BRANCHES	S	EM:	I
Recei paper	Sir/Madam. ved with thanks the following Semiester/Unit s from your exam cell:	S 1 20	2	g./ATKT) questic
Sr. No.	Subject Name	Subject Code	SC	HC	Copie
1					
	Applied Mathematics- I	FEC101	NEW PA	\checkmark	
2	Applied Mathematics- I Applied Physics- I	FEC101 FEC102	NEW PANKE	\checkmark	02
			NEW PANUE		02
2	Applied Physics- I	FEC102	NEW PANKE		02 02 - 02
2	Applied Physics- I Applied Chemistry- I	FEC102 FEC103	NEW PANIE		02 02 - 02
2 3 4	Applied Physics- I Applied Chemistry- I Engineering Mechanics	FEC102 FEC103 FEC104	NEW PANDE		02 02 - 02
2 3 4 5	Applied Physics- I Applied Chemistry- I Engineering Mechanics	FEC102 FEC103 FEC104 FEC105	NEW PANUE		02 02

(Shaheen Ansari) Librarian, AIKTC IR@AIKTC

(b)

(c)

Paper / Subject Code: 58501 / Applied Mathematics - I.

FE-Sem-I-CBSGS

aiktcdspace.org

[Time: 3 Hours]

[Marks:80]

(3)

2. Attempt any three questions from Q.2 to Q.6.

 2^{2} 2+i

Q1 (a) Prove
$$cosh^5x = cosh5x + 5 cosh3x + 10 coshx$$

If
$$u = \log(\tan x + \tan y)$$

Prove $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} = 2$
(3)

If
$$u = \frac{yz}{x}$$
, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ Show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 4$ (3)

3

(e) Show that
$$\log(1 + \sin x) = x + \frac{x^2}{2} + \frac{x^3}{6}$$
 (4)
(f) If $y = \frac{x^2}{1 + x^2}$ Eind y_x (4)

Q2 (a) Solve the Equation
$$x^4 - x^3 + x^2 - x + 1 = 0$$
 (6)

(b) Reduce the following Matrix to the Normal form and hence find the (6) rank of the matrix

$$A = \begin{pmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{pmatrix}$$

(c) If
$$\mathbf{u} = \frac{x^2 y^2 z^2}{x^2 + y^2 + z^2} + \cos^{-1}\left(\frac{xy + yz}{\sqrt{x^2 + y^2 + z^2}}\right)$$
 (8)
Find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$

Page 1 of 2

53399

8B9F53D3223144C74BCE2CC99009D85F

Paper / Subject Code: 58501 / Applied Mathematics - I.

aiktcdspace.org

IR@AIKTC

Q3	(a)	 (a) Investigate for what values of λ and μ the system of equations x+2y+3z= 4, x+3y+4z = 5, x+3y+λz =μ. have 1) unique solution, 2) Infinite solutions, 3) No solution 	(6)
	(b)	Find the Extreme values of $f(x,y) = xy + a^3(\frac{1}{x} + \frac{1}{y})$	(6)
	(c)	Separate into real and imaginary parts of $\tan^{-1}(e^{i\theta})$	(8)
Q4	(a)	If $u^2 + xv^2 = x + y$, $v^2 + yu^2 = x - y$ Find $\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}$	(6)
	(b)	If log cos($x+iy$)= $a+ib$ Prove $2e^{2a} = \cosh 2y + \cos 2x$	(6)
	(c)	Solve the following Equations by Gauss Seidel method Upto four iterations.	(8)
Q5	(a)	4x-2y-z=40, x-6y+2z=-28z, x-2y+12z=-86 Using De Moivre's theorem Prove $\cos^{7}\theta = \frac{1}{2^{6}}(\cos^{7}\theta + 7\cos^{5}\theta + 21\cos^{3}\theta + 35\cos^{6}\theta)$	(6)
	(b)	Evaluate $\lim_{x \to \infty} \left(\frac{1}{x^2} - \cot^2 x\right)$	(6)
(c)	If $y = \sin(m \sin^{-1} x)$ Prove that $(1+x^2)y_{n+2} - (2n+1)xy_{n+4} + (m^2 - m^2)y_n = 0$ And hence findy ₃ (0).	(8)
Q6 ()	a)	(a) Show the following vectors are linearly dependent and find the relation between them. $[2, -1, 3, 2]$, $[1, 3, 4, 2]$, $[3, -5, 2, 2]$.	(6)
()	5)	If $z=f(x,y)$ where $x = u \cosh v$, $y = u \sinh v$, $Prove$ $(\frac{\partial z}{\partial x})^2 - (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial u})^2 - \frac{1}{u^2} (\frac{\partial z}{\partial v})^2$	(6)
(c)	Fit the curve of the form $y=ab^x$ to the following data.	(8)

Χ	- 2	3	4	5	6
Y	144	172.8	207.4	248.8	208.5

53399

Page 2 of 2

8B9F53D3223144C74BCE2CC99009D85F

aiktcdspace.org

Paper / Subject Code: 58505 / Applied Physics - I.

27

FE-sem-I-CBSGS

Time: 2 Hours

Marks: 60

N:B	1.	Question No.1 is compulsory.	
	2.	Attempt any Three questions from the remaining questions Nos.2 to 6.	
	3.	Assume suitable data wherever required.	
	4.	Figures to the right indicate marks.	
Q.1		Attempt Any Five	
	a)	Define the following terms 1) Space lattice 2) Unit cell 3) lattice point	03
	b)	energy bands.	03
	c)	What are liquid crystals? List the various types of liquid crystals.	03
	d)	What are polar and non-polar dielectrics?	03
	e)	Define relative permeability and susceptibility. Write the relation between them.	03
	f)	A classroom has dimensions 20x15x5 m ³ , the reverberation time is 3.5sec.Calculate	03
		the total absorption of its surfaces and the average absorption coefficient.	
	g)	What are ultrasonic waves? State the direct piezoelectric effect.	03
Q.2	a)	Show that Fermi level in intrinsic semiconductor lies at the centre of the forbidden band, $E_F=E_C + E_V/2$	08
	b)	Draw the following; (i) (2 3 1) (ii) [2 0 1] (iii) (i 2 i) Calculate the packing	07
		efficiency for Body centered cubic cell?	
Q.3	a)	Explain various stages of hysteresis and give the significance of hysteresis	08
	b)	Deduce the Braggs law for the diffraction of X- rays in crystals.	07
Q.4	a)	For a cubic structure in a crystal, derive an expression for interplanar spacing between the planes with miller indices (hkl)	05
	b)	What is potential barrier? How is it formed in a p-n junction?	05
	c)	Derive Clausius - Masotti relation for non-polar dielectrics.	05
Q.5	a)	Copper has F.C.C. structure and the atomic radius is 1.28 Å. Calculate its density, (At wt = 63.54, $N_A = 6.023 \times 10^{23}$)	05
	b)	A copper strip 2cm wide and 1mm thick is placed in a magnetic field with B=1.5 Wb/m ² . If current of 200 A is set up in the strip, calculate Hall voltage that appears across the trip. Given $R_H = 6 \times 10^{-7} \text{ m}^3/\text{C}$.	05
	c)	Explain in detail the conditions necessary for good acoustical design of an auditorium	05
Q.6	a)	What are real crystals?	05
		Differentiate between Frenkel and Schottky defect	
	b)	Define the terms:i) mobility ii) conductivity.	05
		Find the resistivity of intrinsic germanium at 300K. Given the density of carriers as 2.5	
	5217	$\times 10^{19}$ /m ³ , $\mu_e = 0.39$ m ² /V-sec and $\mu_h = 0.19$ m ² /V-sec.	
	c)	Find the natural frequency of vibration of quartz plate of thickness 1.8mm.Given Young's modulus for quartz is 8 x 10 ¹⁰ N/m ² , Density of quartz is 2650 kg/m ³ .	05

78345

Page 1 of 1

FE-Sem-J-CBSGS

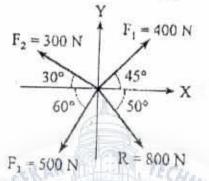
Paper / Subject Code: 58502 / Engineering Mechanics.

aiktcdspace.o

[4]

[4]

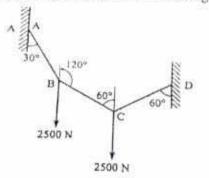
[8]

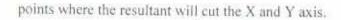

(3 Hours)

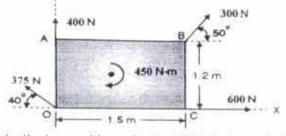
(Total Marks: 80)

- N.B.: 1. Question No. 1 is compulsory.
 - 2. Attempt any 3 more questions from remaining five.
 - 3. Assume suitable data if necessary, and mention the same clearly.
 - 4. Figures to the right indicate full mark.
 - 5. Take $g = 9.81 \text{ m/s}^2$.

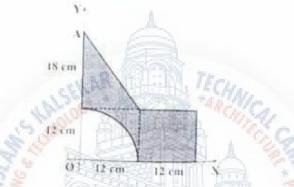
IR@AIKTC


a) Forces F₁, F₂, F₃ and F₄ are acting on a particles. Find the force F₄ so as to give the resultant of system of concurrent forces R = 800 N as shown in figure.

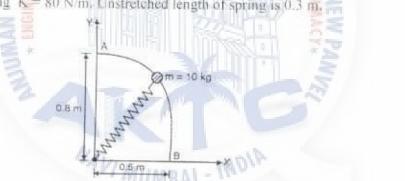

b) A light fixture weighing 24 N is hung by a string as shown in figure. Determine the tensions in AC and BC of the string.
 [4]

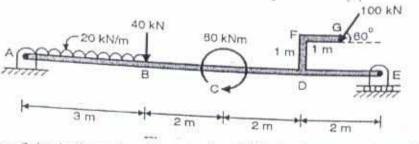

60

- c) State various laws of friction.
- d) The motion of a particle is defined by the relation $v = 4t^2-3t-1$ where v is in m/s and t is in sec. If the displacement x = -4m at t = 0, determine the displacement and acceleration at t = 3 sec. [4]
- e) A car travelling at a speed of 60m/s is braked and comes to rest in 10 seconds after the brakes are applied. Find the minimum coefficient of friction between the wheels and the road.
- a) Two equal loads of 2500 N are supported by the flexible string ABCD at point B and C. Find the tension in the portion AB, BC and CD of the string.



b) Find the resultant of the force system on a body OABC as shown in figure. Also find the




- c) If a ball is thrown vertically down with a velocity of 10m/s from a height of 3m. Find the maximum height it can reach after hitting the floor, if the coefficient of restitution is 0.7.
- 3. a) Determine the Centroid of the shaded area.

b) The 10kg mass slides from rest at A along the frictionless rod. Determine the speed at B. Stiffness of the spring K = 80 N/m. Unstretched length of spring is 0.3 m. [6]

- c) A force F = 80i + 50j 60k passes through a pont A (6,2,6). Compute its moment about origin.
 [6]
- 4. a) Find support reactions at A and E for the beam loaded as shown in fig.

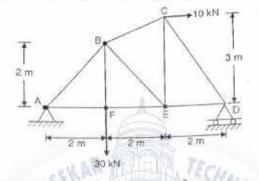
b) An aero plane flying horizontally with a velocity of 100m/s releases a packet which [6] lands to the ground after 8 seconds. Find the velocity with which the packet lands.

71729

Page 2 of 4

2FC8B81F0F26A74E5132017E089E31E0

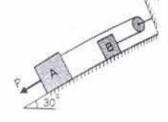
[6]


[8]

[8]


[6]

Paper / Subject Code: 58502 / Engineering Mechanics.


- Also find the height from which it was released.
- c) A wheel of radius 0.75m rolls without slipping on a horizontal stationary surface to the right. Determine the velocities of the points P and Q when the velocity of centre of the wheel is 25 m/s to the right.
- 5. a) For the truss shown in Fig, determine :
 - i) Forces in members AB, BF and EF by method of sections only.
 - ii) Forces in all other members by method of joints.

- b) A motorcycle starts from rest and accelerates at 2m/s² till velocity reaches 10m/s. Then it accelerates at 1m/s² till velocity reaches 15m/s and continues at uniform velocity of 15m/s till it covers a total distance of 300m. Find the total time taken to cover this distance. Draw the v-t and x-t graph for this motion.
- c) In the slider crank mechanism shown in fig, the crank AB of length 10 cm rotates anticlockwise with an angular velocity of 6 rad/sec. The connecting rod BC is 45 cm in length and the slider at C is constrained to move along a horizontal line. At the instant shown, find the angular velocity of rod BC and velocity of slider at C.

6. a) Determine the force P to cause motion to impend. Take masses of blocks A and B as 8kg and 4kg respectively. Coefficient of static friction between sliding surfaces is 0.2. Assume smooth pulley. The force P and the rope are parallel to the inclined plane.

- b) Explain conditions for equilibrium for different system of forces in space.
- [4]
- c) A car starts from rest and moves along a circular path having a radius of 25m. Its speed increases at a uniform rate of 0.5 m/s². Find the time from the start and distance travelled

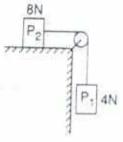
Page 3 of 4

2FC8B81F0F26A74E5132017E089E31E0

71729

1

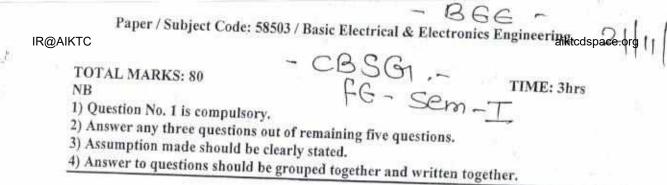
[3]

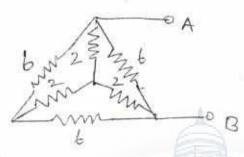

[5]

[6]

Paper / Subject Code: 58502 / Engineering Mechanics.

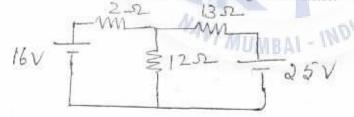
IR@AIKTC


- when its resultant acceleration becomes 1.5 m/s².
- d) Blocks P₁ = 4N and P₂ = 8N are connected by inextensible string. Find acceleration of the blocks. The coefficient of kinetic friction is 0.15, pulley is frictionless. [4]



2FC8B81F0F26A74E5132017E089E31E0

a. Find RAB 01


Find the Norton's equivalent across AB. b.

A pure inductor of 0.2 H is connected across single phase 200 V, 50 Hz Ċ., supply. Write the instantaneous equation of voltage and current. 3

- d. Write any four conditions of series resonance.
- What is the phase line relation in star connected system? e. £,
- Explain the working of a single phase transformer under load g.
- Illustrate the working of half wave rectifier.

Using Mesh analysis find current through 2 Ω resistor. Q2 а.

The impedances (8+6) Ω and (10-j10) Ω are connected in parallel across 8 b. voltage of 23020. Determine current in each branch and kVA, kVAR. kW and power factor of the whole circuit,

TURN OVER

19

3

3

3

2

4

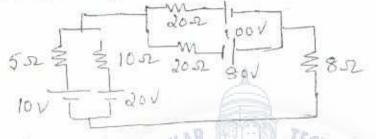
2

6

67344

1 of 3

EE3BC0983D326D114F812BDFD2C73E07


Paper / Subject Code: 58503 / Basic Electrical & Electronics Engineering. IR@AIKTC

c. Derive emf equation of a single phase transformer

- aiktcdspace.org
- 6

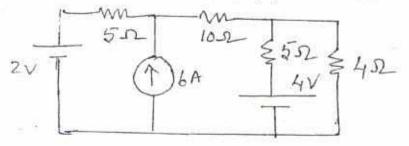
7

- Q3 a. Calculate the phase and line currents in a balanced delta connected load 8 taking 75 kW at a power factor of 0.8 lag from a three phase 440 V supply. Also calculate the per phase impedance.
 - b. Illustrate with neat circuit diagram the procedure for conducting open 6 circuit test and short circuit test.
 - c. Illustrate with neat diagram and explain the input characteristics of an 4 NPN transistor in CE configuration.
 - d. Draw the circuit diagram and output voltage waveform of a full wave 2 rectifier with capacitor filter.
- Q4 a. Find current through 8 Ω resistor using source transformation.

- b. Three identical coils each having a resistance of 10 Ω and an inductive reactance of 10 Ω are connected in star across 400 V three phase supply. 4 Find the reading on each of the watt meters connected to measure the power
- c. Define the rms value of an ac quantity,
- d. Derive rectification efficiency and ripple factor of a full wave bridge 4 tapped rectifier
- Q5 a. Determine the current through 8 Ω resistor in the network using 8 Thevenin's theorem 5.57 L

- b. An rms voltage of $100 \ge 0$ is applied to an impedance $Z = 20 \ge 30$. Find 4 the current through the circuit and power factor of the circuit.
- c. Derive the conditions for maximum efficiency of a single phase 8 transformer.

[TURN OVER


2 of 3

EE3BC0983D326D114F812BDFD2C73E07

67344

Paper / Subject Code: 58503 / Basic Electrical & Electronics Engineering

Q6 a. Find current through 4 Ω resistor using superposition theorem.

- b. A series R-L-C circuit with R=10 Ω , L=0.014 H and C=10 μ F is 7 connected across 230V variable frequency supply. Calculate a) resonance frequency b) current at resonance c) Q-factor d)
- voltage across inductor and capacitor and e) power factor at resonance.
 Prove that the power and power factor in a balanced three phase circuit 6 can be calculated from the reading of two watt meters. Draw relevant connections and phasor diagram.

