#### A PROJECT REPORT

ON

# "EPIDEMIC OUTBREAK DETECTION AND PREDICTION USING MACHINE LEARNING"

# Submitted to UNIVERSITY OF MUMBAI

In Partial Fulfilment of the Requirement for the Award of

# BACHELOR'S DEGREE IN COMPUTER ENGINEERING

BY

Poonawala Mohd Ayan Ishtiaque Ruksana 16CO44 Ansari Mohd Salman Abdul Salam Asiya Bano 16CO20 Sakharkar Sahil Salauddin Nazima 16CO47

UNDER THE GUIDANCE OF Prof. Kalpana R.Bodke



# DEPARTMENT OF COMPUTER ENGINEERING Anjuman-I-Islam's Kalsekar Technical Campus SCHOOL OF ENGINEERING & TECHNOLOGY

Plot No. 2 3, Sector - 16, Near Thana Naka, Khandagaon, New Panvel - 410206 **2019-2020** 

AFFILIATED TO
UNIVERSITY OF MUMBAI

### A PROJECT II REPORT ON

"EPIDEMIC OUTBREAK DETECTION AND PREDICTION USING MACHINE LEARNING"

# Submitted to UNIVERSITY OF MUMBAI

In Partial Fulfilment of the Requirement for the Award of

# BACHELOR'S DEGREE IN COMPUTER ENGINEERING

BY

Poonawala Mohd Ayan Ishtiaque Ruksana 16CO44 Ansari Mohd Salman Abdul Salam Asiya Bano 16CO20 Sakharkar Sahil Salauddin Nazima 16CO47

UNDER THE GUIDANCE OF PROF. GUIDE NAME



### DEPARTMENT OF COMPUTER ENGINEERING

Anjuman-I-Islam's Kalsekar Technical Campus SCHOOL OF ENGINEERING & TECHNOLOGY

Plot No. 2 3, Sector - 16, Near Thana Naka,

Khandagaon, New Panvel - 410206

2019-2020 AFFILIATED TO



**UNIVERSITY OF MUMBAI** 

# Anjuman-i-Islam's Kalsekar Technical Campus

**Department of Computer Engineering** 

**SCHOOL OF ENGINEERING & TECHNOLOGY** 

Plot No. 2 3, Sector - 16, Near Thana Naka,

Khandagaon, New Panvel - 410206



# **CERTIFICATE**

This is certify that the project entitled

# "Epidemic Outbreak Detection and Prediction using Machine Learning"

submitted by

Poonawala Mohd Ayan Ishtiaque Ruksana 16CO44 Ansari Mohd Salman Abdul Salam Asiya Bano 16CO20 Sakharkar Sahil Salauddin Nazima 16CO47

is a record of bonafide work carried out by them, in the partial fulfilment of the requirement for the award of Degree of Bachelor of Engineering (Computer Engineering) at *Anjuman-I-Islam's Kalsekar Technical Campus, Navi Mumbai* under the University of MUMBAI. This work is done during year 2019-2020, under our guidance.

Date: / / MAVI MUMBAI - INDIA

Prof. Kalpana R.Bodke Project Supervisor Prof. Kalpana R.Bodke Project Coordinator

Prof. Tabrez Khan HOD, Computer Department

DR. ABDUL RAZAK HONNUTAGI Director

**External Examiner** 

# Acknowledgements

I would like to take the opportunity to express my sincere thanks to my guide **Prof.Kalpana R. Bodke**, Assistant Professor, Department of Computer Engineering, AIKTC, School of Engineering, Panvel for her invaluable support and guidance throughout my project research work. Without her kind guidance & support this was not possible.

I am grateful to her for his timely feedback which helped me track and schedule the process effectively. Her time, ideas and encouragement that he gave is help me to complete my project efficiently.

We would like to express deepest appreciation towards **DR. ABDUL RAZAK HONNUTAGI**, Director, AIKTC, Navi Mumbai, **Prof. Tabrez Khan**, Head of Department of Computer Engineering and **Prof.Kalpana R. Bodke**, Project Coordinator whose invaluable guidance supported us in completing this project.

At last we must express our sincere heartfelt gratitude to all the staff members of Computer Engineering Department who helped me directly or indirectly during this course of work.

NAVI MUMBAI - INDIA

Poonawala Mohd Ayan Ishtiaque Ruksana Ansari Mohd Salman Abdul Salam Asiya Bano Sakharkar Sahil Salauddin Nazima

# **Project I Approval for Bachelor of Engineering**

This project entitled Epidemic Outbreak Detection and Prediction using Machine Learning by Poonawala Mohd Ayan Ishtiaque Ruksana, Ansari Mohd Salman Abdul Salam Asiya Bano, Sakharkar Sahil Salauddin Nazima is approved for the degree of Bachelor of Engineering in Department of Computer Engineering.

|                     | Examiners  |
|---------------------|------------|
| WALSEKAR TECHN      | <u></u>    |
| M. J. CHION CO.     | E Car      |
|                     | * 25°      |
|                     | upervisors |
|                     | 32         |
| 2                   | E          |
|                     |            |
| NAVI MUMBAI - INDIA | Chairman   |
|                     |            |

### **Declaration**

I declare that this written submission represents my ideas in my own words and where others ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

Poonawala Mohd Ayan Ishtiaque Ruksana Roll Number:16CO44

Ansari Mohd Salman Abdul Salam Asiya Bano Roll Number:16CO20

Sakharkar Sahil Salauddin Nazima Roll Number: 16CO47

## **ABSTRACT**

Epidemic diseases are the contagious diseases that are possible to be spread into the entire nation if the contagion measurement had reached the outbreak level and manage to wipe out the entire population. Epidemic Disease can have possible chances to spread into entire city if the contagion measurement reached to outbreak level. Epidemic disease outbreak had caused nowadays community to raise their great concern over the infectious disease controlling, preventing and handling methods to diminish the disease dissemination percentage and infected area.

The aim of the proposed system is to predict the spread of an epidemic by analyzing the conditions in the areas where people are affected. This project is focused on Various diseases, such as Influenza, Zika Virus, Malaria, Dengue which is an infectious disease, caused by exposure to the virus. The prediction will be done by analyzing the spread based on the movement of the disease through the population. It will be implemented using Machine Learning techniques to predict the spread in particular geographical regions. An approach model to predict the Disease area by using Text Analysis. Epidemic model use the power of Social Media data and this data help to provide the probability score of a Outbreak of Epidemic. The Data is extract on daily bases which make the output of the model more accurate we use SVM Algorithm and various Machine Learning Technique.

**Keywords:** Epidemic Diseases, Disease Forecast, Prediction algorithm, Epidemic spread, sentiment analysis, Machine Learning, social media, Epidemic Breakout Detection, public health, NLTK.

# **Contents**

|                                                | Acknowledgement ii |                                                            |    |  |  |
|------------------------------------------------|--------------------|------------------------------------------------------------|----|--|--|
| Project I Approval for Bachelor of Engineering |                    |                                                            |    |  |  |
|                                                | Declaration        |                                                            |    |  |  |
|                                                | Abst               | ract                                                       | vi |  |  |
|                                                | Table              | e of Contents                                              | ix |  |  |
| 1                                              | Intr               | oduction 40                                                | 2  |  |  |
| 1                                              | 1.1                |                                                            | 2  |  |  |
|                                                | 1.1                | Project Scope                                              | 3  |  |  |
|                                                | 1.3                | Project Goals and Objectives                               | 3  |  |  |
|                                                | 1.5                | 1 3 1 Goals                                                | 3  |  |  |
|                                                |                    | 1.3.2 Objectives                                           | 3  |  |  |
|                                                | 1.4                | Purpose                                                    | 4  |  |  |
|                                                | 1.1                | organization of Report                                     | •  |  |  |
| 2                                              | Lite               | rature Survey                                              | 5  |  |  |
|                                                | 2.1                | Epidemic Outbreak Prediction Using Artificial Intelligence | 5  |  |  |
|                                                |                    | 2.1.1 Advantages of Paper                                  | 5  |  |  |
|                                                |                    | 2.1.2 Disadvantages of Paper                               | 5  |  |  |
|                                                |                    | 2.1.3 How to overcome the problems mentioned in Paper      | 5  |  |  |
|                                                | 2.2                | Deep Learning for Epidemiological Predictions              | 6  |  |  |
|                                                |                    | 2.2.1 Advantages of Paper                                  | 6  |  |  |
|                                                |                    | 2.2.2 Disadvantages of Paper                               | 6  |  |  |
|                                                |                    | 2.2.3 How to overcome the problems mentioned in Paper      | 6  |  |  |
|                                                | 2.3                | Epidemic Prediction                                        | 6  |  |  |
|                                                |                    | 2.3.1 Advantages of Paper                                  | 7  |  |  |
|                                                |                    | 2.3.2 Disadvantages of Paper                               | 7  |  |  |
|                                                |                    | 2.3.3 How to overcome the problems mentioned in Paper      | 7  |  |  |
|                                                | 2.4                | Technical Review                                           | 7  |  |  |
|                                                |                    | 2.4.1 Advantages of Technology                             | 8  |  |  |
|                                                |                    | 2.4.2 Reasons to use this Technology                       | 8  |  |  |
| 3                                              | Proj               | ect Planning                                               | 9  |  |  |
|                                                | 3.1                | Members and Capabilities                                   | 9  |  |  |
|                                                | 3.2                | Roles and Responsibilities                                 | 9  |  |  |
|                                                |                    |                                                            |    |  |  |

## IR@AIKTC-KRRC

|   | 3.3                | Assumptions and Constraints                                | 9 |
|---|--------------------|------------------------------------------------------------|---|
|   | 3.4                | Project Management Approach                                | 0 |
|   | 3.5                | Ground Rules for the Project                               | 0 |
|   | 3.6                | Project Budget                                             | 0 |
|   | 3.7                | Project Timeline                                           | 1 |
| 4 | Softv              | ware Requirements Specification 12                         | 2 |
|   | 4.1                | Overall Description                                        | 2 |
|   |                    | 4.1.1 Product Perspective                                  | 2 |
|   |                    | 4.1.2 Product Features                                     | 2 |
|   |                    | 4.1.3 User Classes and Characteristics                     | 2 |
|   |                    | 4.1.4 Operating Environment                                | 3 |
|   |                    | 4.1.5 Design and Implementation Constraints                | 3 |
|   | 4.2                | System Features                                            | 3 |
|   |                    | 4.2.1 Map View                                             | 3 |
|   | 4.3                | 4.2.1 Map View                                             | 4 |
|   |                    | 4.3.1 User Interfaces                                      | 4 |
|   |                    | 4.3.2 Hardware Interfaces                                  |   |
|   |                    | 4.3.3 Software Interfaces                                  |   |
|   |                    | 4.3.4 Communications Interfaces                            |   |
|   | 4.4                | Nonfunctional Requirements                                 |   |
|   |                    | 4.4.1 Performance Requirements                             |   |
|   |                    | 4.4.2 Safety Requirements                                  |   |
|   |                    | 4.4.3 Security Requirements                                | 5 |
| 5 | Syste              | em Design                                                  | 6 |
|   |                    | System Requirements Definition                             |   |
|   |                    | 5.1.1 Functional requirements                              |   |
|   |                    | 5.1.2 System requirements (non-functional requirements) 19 |   |
|   | 5.2                |                                                            |   |
|   | 5.3                | System Architecture Design                                 | 0 |
|   |                    | 5.3.1 Text Mining                                          |   |
|   |                    | 5.3.2 Machine Learning Module                              | 1 |
|   |                    | 5.3.3 Django                                               | 2 |
|   |                    | 5.3.4 Web Module                                           | 2 |
|   | 5.4                | Systems Integration                                        | 3 |
|   |                    | 5.4.1 Class Diagram                                        | 3 |
|   |                    | 5.4.2 Sequence Diagram                                     | 4 |
| 6 |                    |                                                            |   |
| U | Impl               | ementation 20                                              | 6 |
| U | <b>Impl</b><br>6.1 | ementation 20 Text Mining and Machine Learning             |   |

## IR@AIKTC-KRRC

| 7  | Syst   | tem Testing                             | 48 |
|----|--------|-----------------------------------------|----|
|    | 7.1    | Test Cases and Test Results             | 48 |
|    | 7.2    | Test Cases:                             | 48 |
|    |        | 7.2.1 Software Quality Attributes       | 51 |
| 8  | Scre   | eenshots of Project                     | 52 |
|    | 8.1    | Home Page and Map View                  | 52 |
|    | 8.2    | COVID-19 Live Tracker                   | 59 |
| 9  | Con    | clusion and Future Scope                | 60 |
|    | 9.1    | Conclusion                              | 60 |
|    | 9.2    | Future Scope                            | 60 |
| Re | eferen | nces AND AND TECT.                      | 60 |
|    |        | S * * * * * * * * * * * * * * * * * * * |    |
|    |        | ENGINEERING STATES                      |    |
|    |        | NAVI MUMBAI - INDIA                     |    |

# **List of Figures**

| 5.1  | Usecase                                      | 17 |
|------|----------------------------------------------|----|
| 5.2  | DFD level 0                                  | 18 |
| 5.3  | DFD level 1                                  | 18 |
| 5.4  | DFD level 2                                  | 18 |
| 5.5  | System Architecture                          | 20 |
| 5.6  | System Architecture                          | 21 |
| 5.7  | ML Model                                     | 22 |
| 5.8  | Web Module                                   | 23 |
| 5.9  | Class Diagram                                | 24 |
| 5.10 | ML Model                                     | 25 |
| 6.1  | Text Mining and Attribute Selecion           | 26 |
| 6.2  | Web Module                                   | 30 |
|      |                                              |    |
| 8.1  | Landing Page                                 | 52 |
| 8.2  | Landing Page                                 | 53 |
| 8.3  | View Helplines                               | 53 |
| 8.4  | Landing Page  View Helplines  View Helplines | 54 |
| 8.5  | Contact Us                                   | 54 |
| 8.6  | About Us                                     | 55 |
| 8.7  | Map View                                     | 55 |
| 8.8  | Map View Hovering                            | 56 |
| 8.9  | Map View Hovering                            | 56 |
| 8.10 | Map View Hovering                            | 57 |
| 8.11 | Search Bar Result of State                   | 57 |
| 8.12 | Search Bar Result of State                   | 58 |
| 8.13 | Covid online Tracker as on 28/4/2020         | 59 |
|      | Graphs for Visualization                     | 59 |
| 9.1  | Participate Certificate                      | 63 |

# **List of Tables**

| 3.1 | Table of Capabilities     | 9 |
|-----|---------------------------|---|
| 2 2 | Table of Pasponsibilities | C |



# **Chapter 1**

# Introduction

Epidemic Disease is communicable Disease which has certain possible to spread into the entire area if the contagion measurement ratio reaches to outbreak level situation. Epidemic Disease such as bird flu, Dengue, Influenza and many more. This contagious diseases had caused major world health issues and was believed to be one of the major factors that had caused 43 percent of life lost globally.

People are not only using twitter while dealing with diseases but also many use search engines to query about symptoms, treatment, the spread of diseases which is time-consuming. This project overcomes the time-consuming problem by collecting all data from twitter and epitomize the required data. Social media such as twitter is useful for collecting real-time news and information. Beginning with data analysis, we first extract data from twitter. Data pre-processing method is used to remove the extra columns, dummy data is also removed by this technique. The Cardinal columns on which the system works is the date, tweet, hashtag, location, and polarity. By accumulating these columns the final CSV is prepared. The population-level pattern based on the nature of epidemiological research makes it well suited for machine learning. Machine learning and data mining techniques are used to make predictions based on patterns learned from data. NLP (Natural Language Processing) is used to understand the human language as it is spoken. NLP will read the tweets and classifies the polarity accordingly. Based on the polarity of tweets the polarity column of CSV is filled. From this CSV by using logic. python the ratio of state polarity is defined. The state which is epidemic will be shown as red colour in the map and in non-epidemic states, if diseases occur at a certain value it will extricate the affected area

# 1.1 Purpose

India has more diversity in the term of the population which mean that an Infectious Disease can divert into Most Dangerous Epidemic Disease. In 2018 there was an epidemic outbreak of Nipah Virus in the state of Kerela, India traced to the fruit

bat in the area[10]. The the outbreak was localized in Kozhikode and Malappuram districts of Kerala[10] and claimed 17 lives[11]. The Purpose of the system is detection and prediction of Epidemic Disease based on sentiment analysis of the Data. This can help the health sector and people to take precautions and care. The prediction will be done by analyzing the spread based on the movement of the disease through the population. It will be implemented using Machine Learning techniques to predict the spread in particular geographical regions.

# 1.2 Project Scope

In order to predict the spread of this disease, which is responsible for causing about half a million deaths per year, we are developing this model. Predicting the spread of Epidemic can enable the residents of at risk areas to take precautions against contracting the disease and be a step towards reducing the number of cases per year.

# 1.3 Project Goals and Objectives

#### **1.3.1** Goals

- a. To provide better user interface.
- b. To provide flexible system to user.
- c. To provide more functionalities to user.
- d. To provide a solution that would assist users to Predict and Detect Epidemic and take Precautions.
- e. Target Large Audience and provide Benefits to them.
- f. User can use it from anywhere through mobile or computer.

# 1.3.2 Objectives

The epidemic disease had become the most dangerous disease for the 21 st Century. The infectious disease had still gone through the outbreaks despite of the modern medical treatment. Model of modern medical treatment has had turned far side due to the epidemic disease dissemination factors such as the increase of population density and the speedy outbreaks of new infectious diseases. health

In this model, we propose a predictive model to predict the status of the epidemic in the specific region. For the experimental purpose, we collect the data from twitter.

# 1.4 Organization of Report

The report is organized as follows: The introduction is given in Chapter 1. It describes the fundamental terms used in this project. It describes the Goal, Objectives and scope of this project. The Chapter 2 describes the review of the relevant various techniques in the literature systems. It describes the pros and cons of each technique with how to overcome those cons using new technology.

The project planning includes members and capabilities of this project ,roles and responsibilities of each member, Budget of Project and Project timeline is describe in Chapter 3. The Chapter 4 describes Functional and Nonfunctional Requirements of project. Along with this it also explain features of system and constraints of system.

The Chapter 5 includes Design Information with Class Diagram, Sequence Diagram, Component Diagram and System Architecture. Implementation of each module is explained in Chapter 6. Chapter 7 shows final Test Cases and Test Results. Chapter 8 includes Screenshot of outputs and Conclusion and Future Scope of Project is described in Chapter 9.

# **Chapter 2**

# **Literature Survey**

# 2.1 Epidemic Outbreak Prediction Using Artificial Intelligence

The paper [1] proposed that Epidemic diseases are Infectious and communicable disease that can be possibly escalate into entire area or city if contagious measurement had reached the outburst level. There are well known epidemic diseases like Cholera, in- fluenza, Bird Flu ans many more. In this paper the approach is to predict the disease prone area using the power of Text Analysis and Machine learning. Epidemic Model use the analysis and provide us a probability score of the spread and analyse the epidemic spread-out. It has used Twitter API for extracting various tweets and then sentiment analysis is applied. For storing the tweets which are extracted from Twitter API, HDFS(mongoDB) has been used. For implementation, they have used words-n grams, words embedding with various deep learning algorithms.

# 2.1.1 Advantages of Paper

- a. It uses a map to show where the diseases can spread.
- b. It consists of N-numbers of diseases.
- c. Cloud Storage for large amount of Data.

# 2.1.2 Disadvantages of Paper

- a. No Updation of Databases.
- b. No prevention of diseases.

# 2.1.3 How to overcome the problems mentioned in Paper

- a. Model update the Database daily for Analysis.
- b. It also provide prevention, list of medicines and helpline numbers.

# 2.2 Deep Learning for Epidemiological Predictions

The paper [2] proposed a present monthly analysis of epidemic diseases using the map of the US with ILI Activity level. It has proposed a deep learning framework for predicting epidemiological profiles from the perspective of time series. Various time series models such as autoregressive model(AR), Gaussian Process Regression(GPR) has been used. This approach tries to improve the performance consistently compare to mostly used linear and non-linear methods on various datasets. They have prepared 3 real-world datasets [2]. Ablation tests are performed on datasets and the results are shown in RMSE. It has a CNN module to take information across different sources. CNN module to catch the dependencies that are time related in the data and Residual module to overcome overfitting issues. This Model is applied on Data sets which consist of country i.e Japan-prefectures, US-region

### 2.2.1 Advantages of Paper

- a. It consist of ILI Activity level which help user to analyzed the level of diseases.
- b. User can download the image of map or data
- c. It consist of map which show mostly update of epidemic diseases.

### 2.2.2 Disadvantages of Paper

- a. This Application doesn't show analysis of specific diseases
- b. No prevention of diseases shown.
- c. Updation of Database is done weekly.

# 2.2.3 How to overcome the problems mentioned in Paper

- a. It will show the Graphical mapping View of Disease.
- b. It also provide prevention, list of medicines and helpline numbers.
- c. Updation of Database is done on daily bases.

# 2.3 Epidemic Prediction

This paper presents a proposed system which will predict the spread of influenza an infectious disease. The prediction will be done by analyzing the spread based on the movement of disease through population. It will also consider environmental factors. It will be implemented using Support Vector Machine, Artificial neural network and other Machine Learning Algorithms. They will use past outbreak data from FluNet to train the model.

### 2.3.1 Advantages of Paper

- a. Predictions are more accurate as this system are specific to a particular disease.
- b. It uses data from FlueNet(WHO based influenza surveillance). So the accuracy of data is more.
- c. It also consides climate changes and other environmental factors.

### 2.3.2 Disadvantages of Paper

- a. It doesn't show spread of epidemic diseases.
- b. It is just a warning system, No prevention is given.

### 2.3.3 How to overcome the problems mentioned in Paper

- a. It will show the Graphical mapping View of Disease.
- b. It also provide prevention, list of medicines and helpline numbers.
- c. Updation of Database is done on daily basis.

### 2.4 Technical Review

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine learning focuses on the development of computer programs that can access data and use it learn for themselves. Sentiment analysis is basically concerned with analysis of emotions and opinions from text. We can refer sentiment analysis as opinion mining. Social media contain huge amount of the sentiment data in the form of tweets, blogs, and updates on the status, posts, etc. Sentiment analysis of this largely generated data is very useful to express the opinion of the mass.

There are a few ways to collect tweets from Twitter. You can use the Twitter API but the Twitter API limits the number of tweets you can collect. You can manually scrape the tweets you want but this can be time consuming. Another option is to use Twint. Twint is a tool that allows you to scrape Tweets off of Twitter that fit inputted requirements. Twint allows you to search and scrape tweets that contain certain words or phrases, tweets published by specific accounts, tweets within a certain time frame and much more.

### 2.4.1 Advantages of Technology

- a. Sentiment analysis finds and justifies the sentiment of the person with respect to a given source of content
- b. Machine Learning can review large volumes of data and discover specific trends and patterns that would not be apparent to humans. For instance, for an ecommerce website like Amazon, it serves to understand the browsing behaviors and purchase histories of its users to help cater to the right products, deals, and reminders relevant to them. It uses the results to reveal relevant advertisements to them.
- c. ML algorithms have the ability to improve over time.

### 2.4.2 Reasons to use this Technology

- a. Sentiment analysis is extremely useful in social media monitoring as it allows us to gain an overview of the wider public opinion behind certain topics. So it can analyze the sentiments of tweets.
- b. Twint allows you to search and scrape tweets that contain certain words or phrases, tweets published by specific accounts, tweets within a certain time frame and much more.
- c. Machine learning can predict the epidemic diseases by using past data and predict future outbreaks.

# **Chapter 3**

# **Project Planning**

# 3.1 Members and Capabilities

Table 3.1: Table of Capabilities

| SR. No Name of Member |                 | Capabilities                               |
|-----------------------|-----------------|--------------------------------------------|
| 1                     | Ayan Poonawala  | Django, UI Design                          |
| 2 Salman Ansari       |                 | Machine learning, Backend, Data Collection |
| 3                     | Sahil Sakharkar | Frontend, UI                               |

#### Work Breakdown Structure

- a. All of the members are equally important in developing the project.
- b. We work on a different part of the project based on one's capability.
- c. Firstly we came up with documentation, And based on the documentation we set our goal and created a blueprint.
- d. We then started going hands-on with the project to develop it according to the flow as decided earlier.

# 3.2 Roles and Responsibilities

Table 3.2: Table of Responsibilities

| SR. No | Name of Member  | Role             | Responsibilities                        |
|--------|-----------------|------------------|-----------------------------------------|
| 1      | Ayan Poonawala  | Team Leader      | UI Design, Django Model                 |
| 2      | Salman Ansari   | Backend          | Text Mining, Ml Model                   |
| 3      | Sahil Sakharkar | Embedding System | Frontend Developing, Integrating System |

# 3.3 Assumptions and Constraints

- a. User of the app Should know how to use browser and Internet
- b. User of the app should know how to read stats of various Diseases.

# 3.4 Project Management Approach

- a. Planning of project.
- b. Defining the scope of the project.
- c. Estimation of time and It's management.
- d. Creating Gantt Charts and properly assigning tasks to members.
- e. Reporting the progress of project with the guide.

# **3.5** Ground Rules for the Project

- a. Properly planning and gathering relevant information is very important.
- b. Developing a Blueprint of the project and work accordingly.
- c. All the members should report to the guide whenever required
- d. Setting up small goals every week.
- e. Achieving the small goal within that span of time.
- f. Keeping tracks of the progress towards project.
- g. Participate in meeting.
- h. Inform the leader about unavailability.

# 3.6 Project Budget

- a. It is a light project.
- b. Cost of the project is very low and efficient.
- c. The cost of Cloud Would add in future scope of project
- d. Python Programming Language(Open Source)
- e. MySQL: Open Source
- f. Frame Work: Django(Open Source)

# 3.7 Project Timeline





# **Chapter 4**

# **Software Requirements Specification**

# 4.1 Overall Description

### 4.1.1 Product Perspective

The product is an open source. It is a web-app based system. This web based app provide service to local user to detect the local emerging epidemic diseases in the particular region with the use of Machine Learning. This System is independent from other third party application. The main outcome of the app is to proposed to create awareness of epidemic in a country by fetching information from social media. we create a model to detect the disease areas. This Information would further given to the government and NGOs to help affected people. The text analysis and sentiment analysis will help to find the required data from social media and this data helps to provide the probability score of an Outbreak of Epidemic of particular areas

#### 4.1.2 Product Features

There are three major features in this system.

Basic Homepage which consist of basic details of diseases information and their precautions and symptoms along with helpline search option which shows various helplines across the country.

Map View Feature acts as a main feature of the Project. Which shows various epidemic spread in map of our country.

Covid-19 tracker is also a Feature Added which shows live tracking of confirmed cases of COVID-19 through out the country

#### 4.1.3 User Classes and Characteristics

The Project is web based project and a social project which help user to detect the upcoming epidemic and enable the resident of risk area to take precautions against the contracting diseases. This Project is proposed to create awareness of epidemic in a country by fetching information from social media.

### 4.1.4 Operating Environment

#### **Software Requirements**

- OPERATING SYSTEM: Windows, Linux.
- python3,Django,html5,css3,JavaScript.
- Jupyter Notebook.
- visual studio, sublime editor.
- Databases : MYSQL Server
- WebServer : XAMP,LAMP
- Browser: Mozilla, Chrome etc

#### **Hardware Requirements**

- Specification Processor :Intel core i3 and above and other processor
- RAM :3GB

### 4.1.5 Design and Implementation Constraints

The Application is Pure Web-based application. GUI is simple and easy which make user to access the application easily and efficiently. This system focuses one of the features at time.

# 4.2 System Features

Map View is one of the main feature of the system. There is an urge of apprehending the inter play between the epidemic unwinding and awareness dispersal in time varying networks. The output will be presented state wise on a country map. The state which has an epidemic will be highlighted. In the case of non-epidemic if some areas have diseases the map will also show the affected area. All in one it reduces time and information is modified on a daily basis which makes data more accurate.

### **4.2.1 Map View**

Map View Feature acts as a main feature of the Project. Which shows various epidemic spread in map of our country Covid-19 tracker is also a Feature Added. Which shows live tracking of confirmed cases of COVID-19 through out the country

#### **Description and Priority**

Map View is one of the main feature of the system. The output will be presented state wise on a country map. The state which has an epidemic will be highlighted. In the case of non-epidemic if some areas have diseases the map will also show the affected area.

#### **Stimulus/Response Sequences**

Stimulus: User clicks the map of the country

Response: Details expansion of various state in table form open.

Stimulus: User clicks on various state by hovering through state color.

Response: Respective state table open with cities in it.

Stimulus: User can Click on new Menu Covid-19 tracker.

Response: New window open which shows Live COVID-19 Tracker in various state

through Live data. .

### **Functional Requirements**

REQ-1: Access to the Databases

REQ-2: Access to Internet and Browser.

# 4.3 External Interface Requirements

#### 4.3.1 User Interfaces

The application is pure web based Application. GUI is very simple. Home page consist of basic info of various diseases and their prevention and symptoms. Header Menu Consists of various working tasks. i.e View Helplines, Contact, Map View. In View Helplines we can search various health helplines in India. Map view is the window where the main functionality of the project held in which they show various spread of the disease in India's Map. and also show Online COVID-19 Tracker.

#### 4.3.2 Hardware Interfaces

Since this application is Pure Web based it doesn't required any special Hardware Interfaces.

#### **4.3.3** Software Interfaces

This software uses different libraries. NLTK library is used to sentiment analysis of the text and data available which gives the Polarity of the data. Django Python

web framework is used to design web with interconnection with Python. Twint API and Official Twitter API is used to extract the Data. Database(SQL) is maintained to store the polarity data after Machine learning process and also use it to match while performing the task. OS support also needed.

#### 4.3.4 Communications Interfaces

The Product is a light web-app, there is no such large communication in the system. Only Databases access, that also done locally. Also https standard is used in-order to gain the access to the browser.

# 4.4 Nonfunctional Requirements

### **4.4.1** Performance Requirements

Performance of overall system is very efficient and well optimize. The time taken to Show various diseases in map would take 3-5 sec as it has Machine Learning in it. Process and everything is well organized. The COVID-19 online tracker also take approx 3-4 sec to show in map.

### 4.4.2 Safety Requirements

This system does not contain any critical data. Still it provided basic security aspects. The databases that are accessed are locally executed. In case of any updates in libraries used can lead to the failure in systems.

# **4.4.3** Security Requirements

All the Libraries used are certified and standard as well as all the framework provide basic security to the system. There is no Critical data in System. Although data stored in Databases with encryption.

# **Chapter 5**

# **System Design**

# 5.1 System Requirements Definition

System requirement definitions specify what the system should do, its functionality and its essential and desirable system properties. The techniques applied to elicit and collect information in order to create system specifications and requirement definitions involve consultations, interviews, requirements workshop with customers and end users. The objective of the requirements definition phase is to derive the two types of requirement:

### **5.1.1** Functional requirements

They define the basic functions that the system must provide and focus on the needs and goals of the end users.

#### **Use-case Diagram**

A use case diagram at its simplest is a representation of a user's interaction with the system that shows the relationship between the user and the different use cases in which the user is involved.



Figure 5.1: Usecase

#### **Data-flow Diagram**

A data-flow diagram is a way of representing a flow of a data of a process or a system. The DFD also provides information about the outputs and inputs of each entity and the process itself. Given below is Level 0 Level 1 and Level 2 DFD of system.



Figure 5.2: DFD level 0



Figure 5.3: DFD level 1



**Figure 5.4:** DFD level 2

#### **5.1.2** System requirements (non-functional requirements)

These are non-functional system properties such as availability, performance and safety etc. They define functions of a system, services and operational constraints in detail.

- a. Usability Application implementation is feasible using technologies that are accessible to the end-users.
- b. Portability The interfaces are compatible with Web View and Mobile view.
- c. Performance Efficiency -Application is able to perform well in a proper time constraint.
- d. Multi User System -Application is able to consider the presence of more than one user in the same environment. All the features of the system operates properly for all users and provides proper transparency.
- e. Time Efficiency Time taken for the executing of system is less.

# 5.2 System Architecture Design

A system architecture is the conceptual model that defines the structure, behavior, and more views of a system. An architecture description is a formal description and representation of a system, organized in a way that supports reasoning about the structures and behaviors of the system.



Figure 5.5: System Architecture

# 5.3 Sub-system Development

This System consist of overall three Modules Text Mining, Machine Learning Module, Web Module. The input to the Text Mining module is extracted data and tweets of various diseases extracted from twitter via Twint and Twitter API. In which this further get filter accordingly. The next module i.e Machine Learning Module takes that data done pre-processing of that data and try to extract some knowledge from that data by applying NLTK algorithm and Sentiment Analysis. After Gaining Knowledge our Third Web Module is used to represent that data into Web format by using Python web framework Django.

### **5.3.1** Text Mining

This the core module of project in which we are extracting various hashtags and disease name from twitter and newspaper websites. Also we will collect location tag from there region.

#### **Text Mining Flow Diagram or Modular Diagram**



Figure 5.6: Text Mining And Data Pre-processing

# **5.3.2** Machine Learning Module

This is where we will try to gain some knowledge from our extracted data. We are going to use SVM (Support Vector Machine) and NLTK to classify the epidemic disease which are currently viral in particular region.

#### Machine Learning Module Flow Diagram or Modular Diagram



Figure 5.7: ML Model

#### Django 5.3.3

Django is a high-level Python web framework that enables rapid development of secure and maintainable websites. Built by experienced developers, Django takes care of much of the hassle of web development, so you can focus on writing your app without needing to reinvent the wheel. It is free and open source, has a thriving and active community, great documentation, and many options for free and paid-for support. Django is the one of framework of python which is use to connect machine learnig model from web application.

#### **Web Module** 5.3.4

After gaining epidemic disease from mining and knowledge gain from it we can represent that data into map by means of 3 level of hierarchy i.e National wise, State wise, city wise.

#### Web Module Flow Diagram or Modular Diagram



Figure 5.8: Web Module

# 5.4 Systems Integration

System integration (SI) is an engineering process or phase concerned with joining different subsystems or components as one large system. It ensures that each integrated subsystem functions as required. Different Sub-Modules Integrated in one full System. SI is also used to add value to a system through new functionalities provided by connecting functions of different systems.

### 5.4.1 Class Diagram

A class diagram in the Unified Modeling Language is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations, and the relationships among objects.



### **5.4.2** Sequence Diagram

A sequence diagram shows object interactions arranged in time sequence. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario.



## **Implementation**

### **6.1** Text Mining and Machine Learning

This module of project in which we are extracting various hashtags and disease name from twitter using twitter API and Twint Commands.

In this module we will try to gain some knowledge from our extracted data. We are going to use SVM (Support Vector Machine) and NLTK to classify the epidemic disease which are currently viral in particular region.



Figure 6.1: Text Mining and Attribute Selecion

#### Twint data extraction query example

```
twint -s getwellsoonmodia — near 'Mumbai' — since 2019-10-07 -o file1.csv — csv

twint -s '#dengue' — until 2019-04-15 — since 2019-01-01 -o dengue3.csv — csv

twint -s '#influenza' — until 2019-10-01 — since 2018-01-01 -o influenza.csv — csv

twint -s '#dengue' — until 2019-10-01 — since 2018-01-01 -o denguee.csv — csv

twint -s '#dengue' — until 2019-10-01 — since 2018-01-01 -o malaria.csv — csv

twint -s '#malaria' — until 2019-10-01 — since 2018-01-01 -o malaria.csv — csv

twint -s '#malaria #dengue' — until 2019-12-01 — since 2018-01-01 — lang 'en' — near 'india' — location — o tryyxy.csv — csv
```

#### **Data Pre-Processing**

```
@author: salman
  import pandas as pd
  data =pd.read_csv("dengue.csv")
  salman=data.loc[:,['date','tweet','hashtags']]
  salman.to_csv("dengue2018.csv")
  ######################
  #hashtag
  @author: salman
  import re
  import pandas as pd
  data = pd.read_csv('data.csv', encoding = 'unicode_escape')
  s = "I love #stackoverflow because #people are very #helpful!
  re.findall(r"#(\w+)", s)
  for i in range(data.shape[0]):
21
      s = data['tweet'][i]
      hashtag = re.findall(r"#(\w+)", s)
23
      data['hashtag'][i] = hashtag
24
25
  #####################################
26
27
  #concate_csvfile.py
28
  @author: salman
29
30
  import pandas as pd
31
                                               "denguuuu.csv", "indluenza2018.csv", "
  names = ["dengue.csv", "dengue2018.csv",
      malaa.csv", "malaria.csv"]
                                                          ,'tweet','hashtags','place'])
  final_data_csv = pd.DataFrame(columns = ["", 'date'
34
  for name in names:
35
36
      data = pd.read_csv(name)
37
      sample = data.loc[:,['date','tweet','hashtags','place']]
#sample.to_csv(name.split('.')[0] + "Final.csv", index = False)
38
      final_data_csv = pd.concat([final_data_csv , sample], axis = 0)
  final_data_csv.to_csv("Final_data.csv", index = False)
```

#### **Machine Learning NLTK- Polarity**

```
@author: salman
 import pandas as pd
 from textblob import TextBlob
 from textblob.sentiments import NaiveBayesAnalyzer
 import re
 def clean_tweet(tweet):
      return '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\\S+)", "
          ", tweet).split())
 data = pd.read_csv('Final_data_with_location.csv')
 data['polarity'] = 'NaN'
 data = data.values
 for i in range (data.shape [0]):
      text = data[i][1]
                                                     , analyzer=NaiveBayesAnalyzer())
      analysis = TextBlob(clean_tweet(data[i][1])
      pol = analysis.sentiment.classification
      print(pol)
      data[i][5] = po
  data = pd. DataFrame (data
 data.rename(columns = {
          '0': "date",
          '1': "tweet",
'2': "hashtags"
          '2': "hasht
'3': "city"
26
           '4': "state"
28
          '5': "polarity"
29
          }, inplace = True)
30
  data.to_csv("Final_data_with_location_and_polarity.csv")
```

#### **Mapping Polarity with various states**

```
\# -*- coding: utf-8 -*-
  import pandas as pd
  import numpy as np
  import ast
  data = pd.read_csv('data.csv', encoding = 'unicode_escape')
data['hashtag'] = data.hashtag.apply(lambda s: list(ast.literal_eval(s)))
  cities = list(data['city'].unique())
  for i in range(2):
       cities.pop()
  polar = []
  epi_check = \{\}
  for city in cities:
16
       dengue\_count = 0
17
       malaria\_count = 0
       influenza_count = 0
18
       zika\_count = 0
19
       chiken\_count = 0
20
       other = 0
21
       check = data.loc[data['city'] == city]
       pos = check.loc[check['polar'] == 'pos'].shape[0]
23
       neg = check.loc[check['polar'] == 'neg'].shape[0]
```

```
lst = list(check['Unnamed: 0'])
      for i in 1st:
26
          if ('malaria' in check['hashtag'][i] or 'Malaria' in check['hashtag'][i
27
             ]):
              malaria_count += 1
          if ('zika' in check['hashtag'][i] or 'Zika' in check['hashtag'][i] or '
             ZikaVirus' in check['hashtag'][i] or 'zikavirus' in check['hashtag'
              ][i]):
              zika\_count += 1
          if ('dengue' in check['hashtag'][i] or 'Dengue' in check['hashtag'][i]):
              dengue_count += 1
          if ('chicungunya' in check['hashtag'][i] or 'Chicungunya' in check['
33
             hashtag'][i]):
              chiken_count += 1
          if ('influenza' in check['hashtag'][i] or 'Influenza' in check['hashtag'
35
              influenza_count += 1
          else:
              other += 1
      total = pos + neg
39
      pos = int(((pos + neg))
40
      if (pos < neg):</pre>
42
          polar.append('Epedimic')
43
          x = 'Epedimic
      else:
45
          polar.append('Non Epedimic')
          x = 'Non Epedimic'
                          ->" + x, pos, neg, malaria_count, dengue_count
         influenza_count , zika_count)
```

NAVI MUMBAI - INDIA

### 6.2 Web and Django Module

This module is implemented using Python programming language and Django framework for web Development. Following are the python packages used:

Django is a high-level python web framework that enables to use python and machine learning in web development. In this module after gaining knowledge from the extracted data and machine learning we represent that data into map my means of 3 level hierarchy . i.e National wise, State Wise, City Wise.



View.py

```
from django. http import HttpResponse
 from django.shortcuts import render
 from django.views.generic import ListVie
 from . models import City
 from django.db.models import Q
 import os
 from .twitter import *
 from django.http import JsonResponse
 from operator import itemgetter
10 from . models import City
from .models import Epi
12 from . models import All
from django.views.decorators.csrf import csrf_exempt
 from rest_framework.decorators import api_view
 import csv
18 import pandas as pd
19 import numpy as np
20 import ast
```

```
21 import requests
  from bs4 import BeautifulSoup
23 from tabulate import tabulate
24 import os
25 import numpy as np
26 import matplotlib.pyplot as plt
27 import time, datetime
28 import os
29 import schedule
30 import pandas as pd
31 from textblob import TextBlob
32 from textblob. sentiments import NaiveBayesAnalyzer
  from django.core.exceptions import MiddlewareNotUsed
  from django.conf import settings
  # Create your views here.
37
  def home(request, * args, **kwargs):
      return render (request, "index.html", {})
40
41
  def about(request, * args, **kwargs):
      return render(request, "about.html",{})
43
  def contact(request, * args, **kwargs):
      return render(request, "contact.html",{})
  def helpline(request, * args, **kwargs):
48
      return render (request, "helpline.html", {})
49
50
  def covid2():
51
      state = []
52
      total_confirmed_case =[]
53
      cured =[]
54
      death =[]
55
      replacer = lambda row: [x.text.replace('\n'),
56
      URL = 'https://www.mohfw.gov.in/'
      response = requests.get(URL).content
58
      soup = BeautifulSoup(response, 'html.parser')
59
      header = replacer(soup.tr.find_all('th'))
60
      datas = []
61
      all_rows = soup.find_all('tr')
62
63
                                                   - INDIA
      for row in all_rows:
64
           stat = replacer(row.find_all('td'
65
           if stat:
66
               datas.append(stat)
67
      datas . remove (datas [-1])
      datas[0][1] = 'A\&N Islands'
69
      header[2] = 'Total Confirmed cases'
70
      header[0] = 'SR.NO'
      datas . remove (datas [-1])
      datas[-1].insert(1,'')
75
      print(datas)
      for act in datas:
76
77
           state.append(act[1])
           total_confirmed_case.append(act[2])
78
           cured.append(act[3])
79
           death.append(act[4])
80
      total_num = datas[-1]
```

```
datas.remove(datas[-1])
       state_data = pd.DataFrame(data = datas, columns = header)
       state_data['Total Confirmed cases'] = state_data['Total Confirmed cases'].
          map(int)
       state_data['Cured/Discharged/Migrated'] = state_data['Cured/Discharged/
85
           Migrated'].map(int)
       state_data['Death'] = state_data['Death'].map(int)
       b=sorted(state_data['Total Confirmed cases'], reverse=True)
87
       group_size = [sum(state_data['Total Confirmed cases']),sum(state_data['Cured
89
           /Discharged/Migrated']), sum(state_data['Death'])]
       group_labels = ['Total Confirmed cases\n' + str(sum(state_data['Total
90
           Confirmed cases']), 'Cured/Discharged/Migrated\n' + str(sum(state_data['
           Cured/Discharged/Migrated'])), 'Death\n' + str(sum(state_data['Death']))]
       custom_colors = ['blue', 'green', 'red']
9
       plt.figure(figsize = (10,3))
92
       plt.pie(group_size, labels = group_labels, colors = custom_colors)
9
       central_circle = plt. Circle ((0,0), 0.5, color =
94
       fig = plt.gcf()
9
       fig.gca().add_artist(central_circle)
90
       plt.rc('font', size = 8)
g'
       fig.savefig('static/diagram.png')
98
       return datas, header, total_num, state_data, maxx
90
100
  def total_case():
101
102
       replacer = lambda row: [x.text.replace('\n',
                                                           ) for x in row
103
       URL = 'https://www.mohfw.gov.in/
104
       response = requests.get(URL).content
105
       soup = BeautifulSoup(response, 'html.parser')
106
       header = replacer(soup.tr.find_all('th'))
10
       case=['ACTIVE CASE', 'CURED', 'DEATHS', 'MIGRATED']
detail = soup.find_all('div', {"class": 'site-stats-
for de in detail:
108
                                                              count'})
109
110
           strong = replacer(de.find_all('strong'))
       total_case = strong[0]
       total_cured = strong[1]
       total_death = strong[2]
114
       cur_time = datetime.date.today()
       return strong, case
116
118
  def data_R():
119
       data = pd.read_csv('data/dataR.csv', encoding = 'unicode_escape')
120
       data['hashtag'] = data.hashtag.apply(lambda s: list(ast.literal_eval(s)))
121
       states = list(data['state'].unique())
122
       print(states)
       for i in range(2):
           states.pop()
126
       polar = []
       epi_check = \{\}
128
129
130
       for state in states:
           dengue\_count = 0
           malaria\_count = 0
           influenza\_count = 0
133
           zika\_count = 0
           chiken\_count = 0
135
           other = 0
136
           dict1 = []
```

```
check = data.loc[data['state'] == state]
138
           pos = check.loc[check['polar'] == 'pos'].shape[0]
139
           neg = check.loc[check['polar'] == 'neg'].shape[0]
140
           lst = list(check['Unnamed: 0'])
141
           for i in 1st:
                if ('malaria' in check['hashtag'][i] or 'Malaria' in check['hashtag'
                   ][i]):
                    malaria_count += 1
144
                if ('zika' in check['hashtag'][i] or 'Zika' in check['hashtag'][i]
145
                   or 'ZikaVirus' in check['hashtag'][i] or 'zikavirus' in check['
                   hashtag'][i]):
                    zika\_count += 1
146
                if ('dengue' in check['hashtag'][i] or 'Dengue' in check['hashtag'][
141
                   i]):
                    dengue\_count += 1
148
                if ('chicungunya' in check['hashtag'][i] or 'Chicungunya' in check['
149
                   hashtag'][i]):
                    chiken_count += 1
150
                if ('influenza' in check['hashtag'][i] or 'Influenza' in check['
15
                   hashtag'][i]):
                    influenza_count += 1
152
                else:
153
                    other += 1
154
           total = pos + neg
155
           pos = int(((pos + neg) * 30)/100)
150
15
           if(pos < neg):
158
                polar.append('Epedimic')
159
                x = 'Epedimic
160
              epi_check.setdefault(state,[]).append(0)
161
               epi_check.setdefault(state,[]).append(x)
162
               epi_check.setdefault(state,[]).append(malaria_count)
163
164
                polar.append('Non Epedimic')
165
               x = 'Non Epedimic'
166
                epi_check.setdefault(state,[]).append(10000)
16
               epi_check.setdefault(state,[]).append(x)
168
                epi_check.setdefault(state,[]).append(malaria_count)
169
170
       return epi_check, states, polar
  def data_City(ct):
175
176
       \# -*- coding: utf-8-
177
178
179
       data = pd.read_csv('data/dataR.csv', encoding = 'unicode_escape')
180
       data['hashtag'] = data.hashtag.apply(lambda s: list(ast.literal_eval(s)))
181
       cities = list(data['city'].unique())
182
       for i in range(2):
183
           cities.pop()
184
185
       polar = []
186
       1i2 = []
187
188
       aa=list(data['city'].where(data['state'] == search))
189
       cityx = list(set(aa))
190
       cityx.pop(0)
191
       for city in cityx:
192
```

```
193
           dengue\_count = 0
           malaria\_count = 0
194
           influenza\_count = 0
195
           zika\_count = 0
196
           chiken\_count = 0
197
           other = 0
           check = data.loc[data['city'] == city]
           pos = check.loc[check['polar'] == 'pos'].shape[0]
200
           neg = check.loc[check['polar'] == 'neg'].shape[0]
20
           1st = list(check['Unnamed: 0'])
202
           for i in 1st:
203
                if ('malaria' in check['hashtag'][i] or 'Malaria' in check['hashtag'
204
                   ][i]):
                    malaria_count += 1
205
                if ('zika' in check['hashtag'][i] or 'Zika' in check['hashtag'][i]
206
                   or 'ZikaVirus' in check['hashtag'][i] or 'zikavirus' in check['
                   hashtag'][i]):
                    zika\_count += 1
201
                if ('dengue' in check['hashtag'][i] or 'Dengue' in check['hashtag'][
209
                   i]):
                    dengue_count += 1
209
                if ('chicungunya' in check['hashtag'][i] or 'Chicungunya' in check['
                   hashtag'][i]):
                   chiken_count += 1
21
                   ('influenza' in check['hashtag'][i] or 'Influenza' in check['
                   hashtag'][i]):
                influenza_count += 1
               else:
                  other += 1
           total = pos + neg
216
           pos = int(((pos + neg) * 30)/100)
218
           if(pos < neg):
219
                polar.append('Epedimic')
220
               x = 'Epedimic'
               if (neg-pos) > 15:
                    threat = 100
                    threat=int((((neg-pos)*100)/15))
226
               li1 =[city, threat]
               li2.append(li1)
228
229
230
           else:
               polar.append('Non Epedimic
231
               x = 'Non Epedimic'
232
233
       return li2
           #print(state + "----->" + x, pos, neg, malaria_count, dengue_count ,
236
               influenza_count, zika_count)
  def sentiment(request, * args, **kwargs):
238
       return render(request, "index2.html",{})
239
  def mapview(request, * args, **kwargs):
240
       csvfile = csv.reader(open("../src/test.csv"))
241
       res = dict(csvfile)
242
       \#res = data_R()
243
       contex = {"output": res}
244
       return render(request, "tempp.html", contex)
245
246
```

```
247
248
  def pred(request, * args, **kwargs):
249
       return render(request, "pred.html",{})
250
  def tempp(request, * args, **kwargs):
251
       return render(request, "tempp.html",{})
252
253
  def new(request):
254
       if request.method == 'POST':
255
           city=request.POST.get("id", None)
256
25
           op=data_City(city)
258
           df = pd. DataFrame (op)
259
260
           df.to_csv('out.csv', sep=',', header=None, index=None)
26
           Epi. objects . all () . delete ()
262
           with open("../src/out.csv") as f:
263
                reader = csv.reader(f)
26
                for row in reader:
26
                     _, created = Epi.objects.get_or_crea
266
                         city = row[0],
26
                        threat=row[1],
268
269
           #context={"citydata": op}
270
  271
           print(op)
       return HttpResponse ("hello")
273
  class TableView (ListView):
275
       model = Epi
276
       template_name = 'tempp3.html'
277
278
       def get_queryset(self): # new
279
            object_list = Epi.objects.all()
280
28
282
283
           return object_list
284
285
  class StateResultsView(ListView):
286
       model = All
287
       template_name = 'tempp.html'
288
289
       def get_queryset(self): # new
290
           quer = self.request.GET.get('st
291
292
           object_list = All.objects.filter(
293
            Q(state_icontains=quer) | Q(city_icontains=quer)
           return object_list
295
290
291
  def covid(request, * args, **kwargs):
298
299
       ranges = \{\}
300
       full_data = \{\}
       datas, header, active_case, state_data, maxx=covid2()
301
       active, case = total_case()
302
       datas.append(active_case)
303
       a = active\_case[2]
304
       a=a[:-1]
305
       total_cas = int(a)
306
       total_cured = int(active_case[3])
307
```

```
total_death = int(active_case[4])
308
       positive = (total_cured * 100)//total_cas
309
       negative = (total_death * 100)//total_cas
310
       states = list(state_data['Name of State / UT'].unique())
311
       for i in range(len(states)):
312
           ranges.setdefault(states[i],[int(datas[i][2]),int(datas[i][3]),int(datas
313
               [i][4])])
           full_data.setdefault(states[i],datas[i])
314
       contex ={"output" : ranges}
315
       print(contex)
316
       return render(request, "map. html", { 'max': maxx, 'datas': datas, 'header':
317
          header , 'active': zip(active, case), 'actives': active, 'active_case':
          active_case, 'total': total_cas, 'positive': positive, 'negative': negative,'
          ranges':contex })
  class SearchResultsView (ListView):
319
       model = City
       template_name = 'helpline.html
321
322
       def get_queryset(self): # new
323
           query = self.request.GET.get('q')
324
           object_list = City.objects.filter(
325
           Q(name_icontains=query) | Q(state_icontains=que
326
32
           return object_list
329
  class TweetView (ListView):
330
       template_name="index2.html
33
       def strtobool(v):
332
           return v.lower() in ["yes", "true",
333
       api = TwitterClient('@Sirajology')
334
       def tweets():
335
           retweets_only = request.args.get('retweets_only')
336
           api.set_retweet_checking(strtobool(retweets_only.lower()))
337
           with_sentiment = request.args.get('with_sentiment')
338
           api.set_with_sentiment(strtobool(with_sentiment.lower())
339
           query = request.args.get('query')
340
           api.set_query(query)
341
340
           tweets = api.get_tweets()
343
           return JsonResponse({'data': tweets, 'count': len(tweets)})
344
345
346
  def clean_tweet(tweet):
                    '.join(re.sub("(@[A-Za-z0-9]+)|([^0
347
                   ", tweet).split()
348
349
  def
       polarity():
350
       data = pd.read_csv('data/Final_data_with_location.csv')
351
       data['polarity'] = 'NaN'
       data = data.values
353
354
       for i in range (data.shape [0]):
355
           text = data[i][1]
356
           analysis = TextBlob(clean_tweet(data[i][1]), analyzer=NaiveBayesAnalyzer
357
               ())
           pol = analysis.sentiment.classification
358
           print(pol)
359
           data[i][5] = pol
360
361
       data = pd. DataFrame (data)
362
```

```
data.rename(columns = {
363
                '0': "date",
364
                '1': "tweet",
365
                '2': "hashtags",
366
                '3': "city"
36
                '4': "state",
                '5': "polarity"
369
                }, inplace = True)
370
       data.to_csv("data/data.csv")
371
372
373
  def append():
374
       name = pd.read_csv("name.csv")
375
       name = name.dropna(how = 'all')
376
       lst\_city = [x.split('[')]0]  for x in name[' City']]
377
       lst_state = [x for x in name[' State']]
378
       data = pd.read_csv("data/Final_data.csv").values
379
       for i in range(data.shape[0]):
380
           data[i][3] = np.random.choice(lst_city)
381
       pd.DataFrame(data).to_csv("data/Final_data_with_location.csv", index = False
382
       data = pd.read_csv("data/Final_data_with_location.csv
383
       data['state'] = 'NaN'
384
       data = data.values
385
       for i in range(data.shape[0]):
386
           index = lst_city.index(data[i][3])
38
           data[i][4] = 1st_state[index]
388
       pd.DataFrame(data).to_csv("data/Final_data_with_location.csv", index = False
389
       polarity()
390
39
392
  def concate_csv():
393
       names = ["data/dengue.csv","data/indluenza2018.csv", "data/malaria.csv","
394
           data/covid.csv"]
395
       final_data_csv = pd.DataFrame(columns = ["", 'date', 'tweet', 'hashtags', 'place
396
           1)
397
       for name in names:
398
            if(len(names) > 5):
390
                data = pd.read_csv(name)
400
                sample = data.loc[:,['date','tweet','hashtags','place']]
#sample.to_csv(name.split('.')[0] + "Final.csv", index = False)
401
402
                final_data_csv = pd.concat([final_data_csv , sample], axis = 0,sort=
403
                    False)
       final_data_csv.to_csv("data/Final_data.csv", index = False)
404
       append()
405
406
407
408
  def job():
409
410
       today = datetime.datetime.now().date()
411
       x = str(today)
       y = str(today - datetime.timedelta(days=1))
412
       dengue = 'twint -s "#dengue" --until '+x+' --since '+y+' --location --near
413
           INDIA — translate -1 english — verified -o data/dengue.csv — csv'
       influ = 'twint -s "#influenza" --- until '+x+' --- since '+y+' --- location --- near
414
           INDIA — translate -1 english — verified -o data/indluenza2018.csv — csv
       malaria = 'twint -s "#malaria" --until '+x+' --since '+y+' --location --near
415
```

```
INDIA — translate — l english — verified — o data/malaria.csv — csv'

covid = 'twint — s "#corona #covid—19" — until '+x+' — since '+y+' — location
— near INDIA — translate — l english — verified — o data/covid.csv — csv

names = [dengue, influ, malaria, covid]

for name in names:
    print(name+' over /n/n/n/n/n')
    os.system(name)

concate_csv()
```

#### Webpages /index.html

```
{%load static%}
  <!DOCTYPE html>
  <html lang="en">
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags -->
    <title > Epidemic Prediction </title >
    <!-- Bootstrap
    <link href="{%static 'css/bootstrap.min.css'%}" rel="stylesheet">
<link href="{%static 'css/bootstrap.min.css'%}" rel="stylesheet">
<link rel="stylesheet" href="{%static 'css/font-awesome.min.css'%}"</pre>
14
15
    k href="{%static 'css/animate.min.css'%}" rel="stylesheet">
<link href="{%static 'css/animate.css'%}" rel="stylesheet" />
<link href="{%static 'css/prettyPhoto.css'%}" rel="stylesheet">
    k href="{%static 'css/style.css'%}" rel="stylesheet">
  </head>
23
  <body>
    <nav class="navbar navbar-default navbar-fixed-top">
      <div class="container">
         < div class = "row">
           <div class="site-logo">
             <a href="{% url
                                 'home'%}" class="brand">Epidemic Prediction </a>
           </div>
           <!-- Brand and toggle get grouped for better mobile display -->
           <div class="navbar-header">
             <button type="button" class="navbar-toggle" data-toggle="collapse"
                  data-target="#menu">
                < i class = "fa fa - bars" > </i>
              </button>
35
           </div>
           <!-- Collect the nav links, forms, and other content for toggling -->
           <div class="collapse navbar-collapse" id="menu">
             <li>>a href="{% url 'home'%}">Home</a></li>
                <a href="{% url 'about'%}">About Us</a>
                <a href="{% url 'helpline'%}">View Helpines </a>
                <a href="{% url 'contact'%}">Contact </a>
                <1i> a href="{% url 'map'%}">Map View</a>
                <li>>a href="{% url 'covid'%}">Covid19</a>
```

```
</div>
         <!-- /. Navbar-collapse -->
50
        </div>
      </div>
    </nav>
53
54
   <div id="home">
55
     <div class="slider">
56
       <div id="about-slider">
57
         <div id="carousel-slider" class="carousel slide" data-ride="carousel">
58
           <!-- Indicators -->
59

    class="carousel-indicators visible-xs">

             data-target="#carousel-slider" data-slide-to="0" class="active"
61
                 ></1i>
             63
           64
           <div class="carousel-inner">
             <div class="item active">
               <img src="{% static 'images/download1.jp</pre>
                  responsive" alt="">
             </div>
             <div class="item">
             <img src="{% static 'images/download2.jpg' %}"</pre>
                 responsive" alt="">
             </div>
            <div class="item">
             <img src="{% static 'images/download3.jpg' %}"</pre>
             responsive" alt="
             </div>
75
            </div>
76
           <a class="left carousel-control hidden-xs" href="#carousel-slider"
78
               data-slide="prev">
             <i class="fa fa-angle-left"></i>
70
            </a>
80
81
           <a class="right carousel-control hidden-xs" href="#carousel-slider"
82
               data-slide="next">
             <i class="fa fa-angle-right"></i>
83
                                             - INDIA
           </a>
84
         </div>
85
          <!--/#carousel-slider-
86
        </div>
87
        <!--/#about-slider --->
88
      </div>
89
    </div>
90
91
   <section id="about">
92
93
     <div class="container">
94
       <div class="center">
         <div class="col-md-6 col-md-offset-3">
95
           <h2>Epidemic Diseases </h2>
96
97
           Below are some Epidemic Diseases description and their
                prevention techniques 
          </div>
        </div>
100
```

```
</div>
101
102
      <div class="container">
103
         <div class="row">
104
105
           <!--/.col-sm-6-->
106
107
           <div class="col-sm-6 wow fadeInDown">
108
             <div class="accordion">
109
               <div class="panel-group" id="accordion1">
                 <div class="panel panel-default">
                   <div class="panel-heading active">
                      <h3 class="panel-title">
                        <a class="accordion-toggle" data-toggle="collapse" data-
                            parent="#accordion1" href="#collapseOne1">
                          <i class="fa fa-angle-right pull-right"></i>
116
                        </a>
                      </h3>
118
                    </div>
120
                    <div id="collapseOne1" class="panel-collapse collapse</pre>
121
                     <div class="panel-body">
                        <div class="media accordion-inner
123
124
                          <div class="media-body">
125
120
                            <b>Influenza, commonly known as the flu, is an
                                infectious disease caused by an influenza virus.
                                Symptoms can be mild to severe. The most common
                                symptoms include: high fever, runny nose, sore
                                throat, muscle pains, headache, coughing, and feeling tired. These symptoms typically begin two
                                days after exposure to the virus and most last less
                                than a week. <br>The cough, however, may last
                                for more than two weeks. In children, there may be
                                diarrhea and vomiting, but these are not common in
                                adults. Diarrhea and vomiting occur more commonly in gastroenteritis, which is an unrelated disease and
                                sometimes inaccurately referred to as "stomach flu"
                                or the "24-hour flu". Complications of influenza may
                                include viral pneumonia, secondary bacterial
                                pneumonia, sinus infections, and worsening of
                                previous health problems such as asthma or heart
                                failure.<br/>br>
Three of the four types of influenza viruses affect humans: Type A, Type B, and
      Type C. Type D has not been known to infect humans, but is believed to have
      the potential to do so. Usually, the virus is spread through the air from
      coughs or sneezes. This is believed to occur mostly over relatively short
      distances. It can also be spread by touching surfaces contaminated by the
      virus and then touching the mouth or eyes. A person may be infectious to
      others both before and during the time they are showing symptoms. The
      infection may be confirmed by testing the throat, sputum, or nose for the
      virus </b><br/>
129
| 130 | < div class = "panel panel - default" >
    <div id="p1" class="panel-heading active">
      <h3 class="panel-title">
         <a class="accordion-toggle" data-toggle="collapse" href="#collapseP1">
           Prevention & Precautions
134
           <i class="fa fa-angle-right pull-right"></i>
135
```

```
</a>
136
      </h3>
137
    </div>
138
139
    <div id="collapseP1" class="panel-collapse collapse ">
140
      <div class="panel-body">
141
        <div class="media accordion-inner">
142
143
          <div class="media-body">
144
145
            <b>Vaccination: Unvaccinated staff should get the flu vaccine <br/>b>
146
                <br/>br>Place patients with influenza or influenza-like illness into
                Droplet Precautions. This will prevent exposures to patients and
                 staff. <br/>br>DO NOT come to work if you have a fever (
                                     F [37.8 C] or greater) or an influenza-like
                temperature of 100
                 illness <br/> <br/>br>Persons with influenza-like symptoms should not
                 visit patients (exception: ill parents visiting children must wear
                 a mask) <br/>br> Wear gloves, masks, and eyewear during
                 respiratory specimen collection (nasal washings, tracheal
                 aspirates, throat, or nasopharyngeal swabs). </b>
141
           </div>
148
         </div>
149
      </div>
150
    </div>
15
  </div>
152
153
                          </div>
154
                        </div>
155
                     </div>
150
                  </div>
15
                 </div>
158
159
                 <div class="panel panel-default">
160
                   <div class="panel-heading active">
161
                     <h3 class="panel-title">
162
                       <a class="accordion-toggle" data-toggle="collapse"</pre>
163
                           parent="#accordion1" href="#collapseTwo1">
                         Dengue
164
                         <i class="fa fa-angle-right pull-right"></i>
165
                        </a>
166
                     </h3>
167
                   </div>
168
                   <div id="collapseTwo1" class="panel-collapse collapse">
169
                     <div class="panel-body">
170
                       Dengue is fast emerging pandemic-prone viral disease in
                           many parts of the world. Dengue flourishes in urban poor
                            areas, suburbs and the countryside but also affects
                           more affluent neighbourhoods in tropical and subtropical
                            countries.<br/>br>
  Dengue is a mosquito-borne viral infection causing a severe flu-like illness and
      , sometimes causing a potentially lethal complication called severe dengue.
      The incidence of dengue has increased 30-fold over the last 50 years. Up to
      50-100 million infections are now estimated to occur annually in over 100
      endemic countries, putting almost half of the worlds population at risk.
      br><br>
174
175 Severe dengue (previously known as dengue haemorrhagic fever) was first
      recognized in the 1950s during dengue epidemics in the Philippines and
      Thailand. Today it affects Asian and Latin American countries and has become
```

```
a leading cause of hospitalization and death among children and adults in
      these regions. <br/>br>
176
  The full life cycle of dengue fever virus involves the role of mosquito as a
177
      transmitter (or vector) and humans as the main victim and source of
      infection.<br>
  <div class="panel panel-default">
    <div id="p1" class="panel-heading active">
179
      <h3 class="panel-title">
180
        <a class="accordion-toggle" data-toggle="collapse" href="#collapseP2">
181
          Prevention & Precautions
182
          <i class="fa fa-angle-right pull-right"></i>
183
184
      </h3>
185
    </div>
186
187
    <div id="collapseP2" class="panel-collapse collapse</pre>
188
      <div class="panel-body">
189
        <div class="media accordion-inner">
190
191
          <div class="media-body">
192
193
            <b>Protect yourself against mosquito bites <br/>br>Avoid visiting
194
                areas prone to mosquitoes <br > Apply mosquito repellent,
                ideally one containing DEET <br > Use mosquito nets while
                sleeping. <br> <br> If you or your child gets a rash or any
               other negative reaction from an insect repellent, wash it off with
                 mild soap and water and stop using the product. Consult a doctor
               if the condition persists,
                                               says Dr Chua Ying Ying. </b>
195
           </div>
196
         </div>
19
      </div>
198
    </div>
199
  </div>
200
                     </div>
20
                   </div>
202
                 </div>
203
204
                 <div class="panel panel-default">
205
                   <div class="panel-heading active">
206
                     <h3 class="panel-title">
207
                       <a class="accordion-toggle" data-toggle="collapse" data-
208
                           parent="#accordion1" href="#collapseThree1">
209
                         <i class="fa fa-angle-right pull-right"></i>
210
                       </a>
                     </h3>
                   </div>
                   <div id="collapseThree1" class="panel-collapse collapse">
                     <div class="panel-body">
                       Malaria: An infectious disease caused by protozoan
216
                           parasites from the Plasmodium family that can be
                           transmitted by the bite of the Anopheles mosquito or by
                           a contaminated needle or transfusion. Falciparum malaria
                           is the most deadly type. <br/>br>
The symptoms of malaria include cycles of chills, fever, sweats, muscle aches
      and headache that recur every few days. There can also be vomiting, diarrhea
      , coughing, and yellowing (jaundice) of the skin and eyes. Persons with
      severe falciparum malaria can develop bleeding problems, shock, kidney and
```

```
liver failure, central nervous system problems, coma, and die. Travelers to
      areas with malaria are advised to take medications to prevent infection if
      exposed. The treatment of malaria is with oral or intravenous medications,
      including chloroquine, mefloquine (Larium), or atovaquone/proguanil (
      Malarone).<br/>br>
  Malaria transmission occurs primarily between dusk and dawn because of the
      nocturnal feeding habits of Anopheles mosquitoes. One should therefore take
      protective measures to reduce contact with mosquitoes, especially during
      these hours. These measures include remaining in well-screened areas, using
      mosquito nets, and wearing clothes that cover most of the body. <br/>
<br/>br> 
  <div class="panel panel-default">
    <div id="p1" class="panel-heading active">
222
      <h3 class="panel-title">
        <a class="accordion-toggle" data-toggle="collapse" href="#collapseP3">
           Prevention & Precautions
225
          <i class="fa fa-angle-right pull-right"></i>
226
         </a>
       </h3>
228
    </div>
220
230
    <div id="collapseP3" class="panel-collapse collapse">
231
      <div class="panel-body">
232
        <div class="media accordion-inner">
234
           <div class="media-body">
235
230
             <b>There's a significant risk of getting malaria if you travel to
             available that offers protection against malaria, so it's very
             important to take antimalarial medication to reduce your chances
                of getting the disease.
  However, antimalarials only reduce your risk of infection by about 90%, so
239
      taking steps to avoid bites is also important. <br > <br > Use insect repellent
       on your skin and in sleeping environments. Remember to reapply it
      frequently. The most effective repellents contain diethyltoluamide (DEET) and are available in sprays, roll-ons, sticks and creams <br/>
br <br/>
Malaria can often be avoided using the ABCD approach to prevention, which
                                              find out whether you're at risk of
      stands for: <br/>
<br/>
Awareness of risk
      getting malaria. <br>
Bite prevention
                                                      avoid mosquito bites by using
      insect repellent, covering your arms and legs, and using a mosquito net. <br
     > <br/>br>Check whether you need to take malaria prevention tablets
      do, make sure you take the right antimalarial tablets at the right dose, and
       finish the course. <br > Diagnosis seek immediate medical advice if
      you have malaria symptoms, including up to a year after you return from
      travelling. </b><br/>br>
240
           </div>
241
         </div>
242
       </div>
243
244
    </div>
245
  </div>
                      </div>
246
                   </div>
247
                 </div>
248
249
                 <div class="panel panel-default">
250
                   <div class="panel-heading active">
251
                     <h3 class="panel-title">
252
```

```
<a class="accordion-toggle" data-toggle="collapse" data-</pre>
253
                            parent="#accordion1" href="#collapseFour1">
                          Zika
254
                          <i class="fa fa-angle-right pull-right"></i>
255
                        </a>
                      </h3>
25
                    </div>
258
                   <div id="collapseFour1" class="panel-collapse collapse">
259
                      <div class="panel-body">
260
                        Zika virus is a mosquito-borne flavivirus that was first
26
                            identified in Uganda in 1947 in monkeys. It was later
                            identified in humans in 1952 in Uganda and the United
                            Republic of Tanzania. <br/> br>
  Outbreaks of Zika virus disease have been recorded in Africa, the Americas, Asia
       and the Pacific. From the 1960s to 1980s, rare sporadic cases of human
      infections were found across Africa and Asia, typically accompanied by mild
      The incubation period (the time from exposure to symptoms) of Zika virus disease
      is estimated to be 3 14 days. The majority of people infected with Zika virus do not develop symptoms. Symptoms are generally mild including fever,
      rash, conjunctivitis, muscle and joint pain, malaise, and headache, and usually last for 2 7 days < br > 
264
265
260
  <div class="panel panel-default">
267
    <div id="p1" class="panel-heading active">
  <h3 class="panel-title">
268
269
         <a class="accordion-toggle" data-toggle="collapse"
270
           Prevention & Precautions
27
           <i class="fa fa-angle-right pull-right"></i>
         </a>
273
       </h3>
     </div>
275
276
    <div id="collapseP4" class="panel-collapse collapse</pre>
      <div class="panel-body">
278
         <div class="media accordion-inner"</pre>
279
280
           <div class="media-body">
281
282
             <b>
283
  Protection against mosquito bites during the day and early evening is a key
284
      measure to prevent Zika virus infection. Special attention should be given
      to prevention of mosquito bites among pregnant women, women of reproductive
      age, and young children. <br>
285
  Personal protection measures include wearing clothing (preferably light-coloured
      ) that covers as much of the body as possible; using physical barriers such
      as window screens and closed doors and windows; and applying insect
      repellent to skin or clothing that contains DEET, IR3535 or icaridin
      according to the product label instructions. <br > br >
  Young children and pregnant women should sleep under mosquito nets if sleeping
288
      during the day or early evening. Travellers and those living in affected
      areas should take the same basic precautions described above to protect
      themselves from mosquito bites. <br/> br>
289
290 Aedes mosquitoes breed in small collections of water around homes, schools, and
      work sites. It is important to eliminate these mosquito breeding sites,
      including: covering water storage containers, removing standing water in
```

```
flower pots, and cleaning up trash and used tires. Community initiatives are
        essential to support local government and public health programs to reduce
      mosquito breeding sites. Health authorities may also advise use of
      larvicides and insecticides to reduce mosquito populations and disease
      spread. </b>
29
            </div>
292
          </div>
293
       </div>
294
     </div>
295
   </div>
296
                        </div>
29
                     </div>
298
                   </div>
299
300
                   <div class="panel panel-default">
301
                     <div class="panel-heading active">
302
                       <h3 class="panel-title">
303
                          <a class="accordion-toggle" data-toggle="collapse" data-
304
                              parent="#accordion1" href="#collapseFive1">
                            COVID-19
305
                            <i class="fa fa-angle-right pull-right"></i>
300
                           /a>
301
                        </h3>
308
                       div>
309
                      div id="collapseFive1" class="panel-collapse collapse">
310
                      <div class="panel-body">
311
                          Coronavirus disease 2019 (COVID-19) is an infectious
312
                              disease caused by severe acute respiratory syndrome.

The disease was first identified in 2019 in Wuhan, the
                              capital of Hubei, China, and has since spread globally, resulting in the 2019 20 coronavirus pandemic.
 \!<\! br\!>\!
                              Common symptoms include fever, cough, and shortness of
                              breath. Muscle pain, sputum production, diarrhea, and sore throat are less common. <br/> \!\! br>While the majority of
                              cases result in mild symptoms some progress to pneumonia
                               and multi-organ failure 
                          <a href="http://www.covid19india.org">Click to track Covid19
313
                               in India </a>
314
  <div class="panel panel-default">
315
    <div id="p1" class="panel-heading active">
316
       <h3 class="panel-title">
317
                                                                       href="#collapseP5">
         <a class="accordion-toggle" data-toggle="collapse"
318
            Measures & Precautions
319
            <i class="fa fa-angle-right pull-right</pre>
320
321
          </a>
       </h3>
     </div>
323
324
    <div id="collapseP5" class="panel-collapse collapse">
325
       <div class="panel-body">
326
         <div class="media accordion-inner">
328
           <div class="media-body">
329
330
              <b>Preventive measures to reduce the chances of infection.<br></b>
                  br > 
              <u1>
                <1i>Staying at home
333
                Avoiding crowded places
334
```

```
<1i>Washing hands with soap and warm water often and for at least 20
335
                    seconds
               Practicing good respiratory hygiene and avoiding touching the
336
                   eyes, nose, or mouth with unwashed hands
               <u1/>
33
               <a href="http://www.covid19india.org">Click to track Covid19 in
338
                   India </a>
           </div>
339
         </div>
340
       </div>
341
     </div>
342
   </div>
343
                      </div>
344
                    </div>
345
                  </div>
346
341
               </div>
348
               <!--/#accordion1
340
             </div>
350
           </div>
35
350
         </div>
353
         <!--/.row
354
       </div>
355
       <!--/.containe
356
     </section>
357
358
    <!--/#about-
359
    <footer id="footer" class="midnight-blue">
360
      <div class="container">
36
         <div class = "row">
362
           <div class="col-md-6 col-md-offset-3">
363
             <div class="text-center">
364
             <a href="#home" class="scrollup"><i class="fa fa-angle-up fa-3x"></i
365
             </div>
366
             © EPIDEMIC PREDICTION.
36
              All Rights Reserved.
368
369
           </div>
370
371
             <div class="col-lg-12">
372
               <div class="social">

373
374
                   <1i><a href="#"><i class="fa fa-facebook"></i></i>
375
                   <a href="#"><i class="fa fa-twitter"></i></a>
376
                   <a href="#"><i class="fa fa-linkedin"></i></i></a>
377
                   <li>>a href="#"><i class="fa fa-dribbble"></i>>
                   <li>>a href="#"><i class="fa fa-skype"></i>>
379
                  380
               </div>
38
             </div>
382
383
         </div>
384
       </div>
     </footer>
385
    <!--/#footer--->
386
387
    <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
388
    <script src="{% static 'js/jquery.js'%}"></script>
389
    <!-- Include all compiled plugins (below), or include individual files as
        needed --->
```

```
<script src="{% static 'js/bootstrap.min.js'%}"></script>
391
     <script src="{% static 'js/jquery.prettyPhoto.js'%}"></script>
<script src="{% static 'js/jquery.isotope.min.js' %}"></script>
392
393
     <script src="{% static 'js/wow.min.js'%}"></script>
394
     <script src="{% static 'js/jquery.easing.min.js'%}"></script>
395
     <script src="{% static 'js/main.js'%}"></script>
     <script src="{% static 'contactform/contactform.js'%}"></script>
397
398
   </body>
399
400
  </html>
```



# **System Testing**

System testing is a level of software testing where a complete and integrated software is tested. The purpose of this test is to evaluate the system's compliance with the specified requirements.

## 7.1 Test Cases and Test Results

| Test<br>ID | Test Case Title                        | Test Condition              | System Behavior                                                   | <b>Expected Result</b>                    |
|------------|----------------------------------------|-----------------------------|-------------------------------------------------------------------|-------------------------------------------|
| T01        | Clicking and Viewing the Diseases info | A Browser                   | On clicking disease info is shown                                 | Disease info on clicking on any disease   |
| T02        | Contact us Page                        | a registered email address  | Feedback given successfully                                       | Successful feed-<br>back                  |
| T03        | View Helpline                          | input city name             | List of helpline<br>numbers shown<br>successfully                 | A view list of helpline numbers           |
| T04        | View map of epidemic Outbreak          | NaN                         | Map View of Epi-<br>demic diseases<br>shown successfully          | Map View of Epidemic Diseases             |
| T05        | View Epidemic cities of state          | A click on any state of map | A table of epidemic cities of that state shown successfully       | A table of epidemic cities of that state. |
| T06        | Search State or<br>City                | input city or state name    | A table view of sta-<br>tus of that city is<br>shown successfully | A table view of status of that city.      |

#### 7.2 Test Cases:

**Title:** Clicking and Viewing the Diseases info

Description: A user should be able to successfully view epidemic

### disease info on clicking on it

Assumption: a supported browser is being used.

### **Test Steps:**

- 1. Navigate to epidemic prediction webapp
- 2. On the Home page ,there are 5 diseases shown.
- 3. Click on any disease.

**Expected Result:** Disease info on clicking on any disease.

Actual Result: On clicking disease info is shown successfully.

Title: Contact us Page

**Description:** A user must be able to send feedback or response to devs.

Pre-condition: a registered email address

### **Test Steps:**

- 1. Navigate to epidemic prediction webapp.
- 2. Go to Contact Us page
- 3. Enter the details.
- 4. Click on submit.

Expected Result: User message sent.

Actual Result: User message has been sent successfully.

**Title:** View Helpline numbers

**Description:**A user must be able to view the helpline numbers of any city on search.

condition: a input city name

### **Test Steps:**

1. Navigate to epidemic prediction webapp and click on View Helpline

- 2. Enter city name.
- 3. Click on search.

**Expected Result:** A view list of helpline numbers.

**Actual Result:** List of helpline numbers shown successfully.

**Title:** View map of epidemic diseases

**Description:**A user must be able to view the map of epidemic diseases with colour on each state viz. red or green.Red indicates Epidemic, Green indicates Non-epidemic.

### **Test Steps:**

- 1. Navigate to epidemic prediction webapp.
- 2. Click on Map View.

**Expected Result:** Map View of Epidemic Diseases

Actual Result: Map View of Epidemic diseases shown successfully.

**Title:**Search status of a city or state.

**Description:** A user must be able to view the status of any city or state on search.

condition: a input city name

### **Test Steps:**

- 1. Navigate to epidemic prediction webapp and click on Map View.
- 2. Enter city name or state name in search box.
- 3. Click on search.

**Expected Result:** A table view of status of that city

**Actual Result:** A table view of status of that city is shown success-

fully.

#### 7.2.1 Software Quality Attributes

Availability-1: The system shall be available to users all the time.

Availability-2: The system shall always have something to function and always pop up error messages in case of component failure.

Efficiency-1: The system shall generate the correct epidemic prediction with an accuracy of 80% above.

Efficiency-2: The system shall provide the right tools to support all its features.



# **Screenshots of Project**

### 8.1 Home Page and Map View



Figure 8.1: Landing Page



Figure 8.3: View Helplines



Figure 8.5: Contact Us



Figure 8.7: Map View



Figure 8.8: Map View Hovering



Figure 8.9: Map View Hovering



Figure 8.10: Map view



Figure 8.11: Search Bar Result of State



NAVI MUMBAI - INDIA

### 8.2 COVID-19 Live Tracker



Figure 8.14: Graphs for Visualization

# **Conclusion and Future Scope**

#### 9.1 Conclusion

In 21st century Epidemic has become one of the dangerous threat There is a need to predict the spread of epidemics as this will give rise to the implementation of a warning system so that people can be prepared and hence we can overall reduce the number of cases in a given year.

Epidemic Prediction Website predict the status of a particular epidemic in a specific region using historical data and current data of social media such as twitter. Our model uses SVM algorithm and sentiment analysis to check the polarity of tweets. A lot of preprocessing of the unstructured data is done to make it structured data and different feature extraction techniques is used.

### 9.2 Future Scope

- Tracking location of user can be added in our proposed system so that helpline numbers are shown according to users nearby location.
- Sending the data to NGOs and suggesting the list of medicines to be prepared of the upcoming epidemic disease.
- In our proposed system we will consider environmental factors according to a particular region which may increase the accuracy to a greater percentage.

## References

- [1] Nimai Chand Das Adhikari, Arpana Alka, Vamsha Kumar Kurva "Epidemic Outbreak Prediction Using Artificial Intelligence (IJC-SIT)", 10, No 4, August 2018
- [2] Yuexin Wu, Yiming Yang, Hiroshi Nishiura, Masaya Saitoh. "Deep Learning for Epidemiological Predictions", The 41st International ACM SIGIR Conference on Research Development in Information Retrieval SIGIR '182018
- [3] SYuvaana Sundarakrishnan, Ak- shay George Koshy, K.P.Vijayakumar" *Epidemic Prediction(IRJET)*",6, Issue 2,Feb 2019
- [4] IP Conference Proceedings 1891, 020064 (2017); https://doi.org/10.1063/1.50053971891, "Predictive analysis effective- ness in determining the epidemic disease infected area.",2017
- [5] Kan C.W. Russ "An Assistive Mobile Application i-AIM App with Accessible UI Implementation for Visually-Impaired and Aging Users",2017
- [6] H. W. Hethcote and J. A. Yorke, "Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematics, vol. 56, Springer-Verlag,". Berlin, 1984. MR 0766910 (86a:92002)
- [7] Xichuan Zhou Member, IEEE, Fan Yang, Yujie Feng, QinLi, Fang Tang, Shengdong Hu, Zhi Lin, Lei Zhang, "ASpatial-Temporal Method to De-tect Global Influenza, Epidemics Using Heterogeneous Data Collected from the Internet IEEE/ACM Transactions

- on Computational Biology and Bioinformatics, Vol. 15.No.03" May-June 1 2018.
- [8] Django Guide *Django Docs* :- https://docs.djangoproject.com/en/3.0/Nov 11 2019
- [9] AIP Conference Proceedings 1891, Au- thor(s). Predictive analysis effectiveness indetermining the epidemic disease infectedarea. "https://doi.org/10.1063/1.50053971891,"2017
- [10] "Nipah virus outbreak: Death toll rises to 14 in Kerala, two more cases identified". The Hindustan Times. 27 May 2018. Retrieved 28 May 2018.
- [11] Wikipedia "https://en.wikipedia.org/wiki/2018 N ipah v irus o utbreak i n K eralacite n ote 12"2019



## **Achievement**

#### 1. Project Competitions

(a) Epidemic Outbreak Detection and Prediction using Machine Learning; Ayan Poonawala, Salman Ansari, Sahil Sakharkar, 6th National Level Project Exhibition cum Poster Presentation, 13th March 2020(Venue: Universal College of Engineering, Vasai)



Figure 9.1: Participate Certificate