A PROJECT REPORT ON ### DESIGN AND ANALYSIS OF PRESSURE VESSEL CHOUDHARY ZAHID ASLAM 17DME106 ANSARI FAZAL MUMTAZ AHMED 17DME109 KHAN ISMAIL ASLAM 17DME117 KHAN MOHD AQUIB ASHFAQUE 17DME120 In partial fulfillment for the award of the Degree Of #### **BACHELOR OF ENGINEERING** IN MECHANICAL ENGINEERING UNDER THE GUIDANCE Of **Prof. RAHUL THAVAI** # DEPARTMENT OF MECHANICAL ENGINEERING ANJUMAN-I-ISLAM KALSEKAR TECHNICAL CAMPUS NEW PANVEL, NAVI MUMBAI – 410206 # UNIVERSITY OF MUMBAI **ACADEMIC YEAR 2019-2020** # ANJUMAN-I-ISLAM KALSEKAR TECHNICAL CAMPUS NEW PANVEL (Approved by AICTE, recg. By Maharashtra Govt. DTE, ## Affiliated to Mumbai University) PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL,NAVI MUMBAI-410206, Tel.: +91 22 27481247/48 * Website: www.aiktc.org # CERTIFICATE This is to certify that the project entitled ## "DESIGN AND ANALYSIS OF PRESSURE VESSEL" Submitted by CHOUDHARY ZAHID ASLAM 17DME106 ANSARI FAZAL MUMTAZ AHMED 17DME109 KHAN ISMAIL ASLAM 17DME117 KHAN MOHD AQUIB ASHFAQUE 17DME120 To the Kalsekar Technical Campus, New Panvel is a record of bonafide work carried out by him under our supervision and guidance, for partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering as prescribed by **University Of Mumbai**, is approved. | Internal Examinar | External Examiner | |-----------------------|----------------------| | (Prof. Rahul Thavai) | (Prof.) | | Head of Department | Principal | | (Prof. Zakir Ansari) | (Dr. Abdul Razak H.) | # ANJUMAN-I-ISLAM KALSEKAR TECHNICAL CAMPUS NEW PANVEL (Approved by AICTE, recg. By Maharashtra Govt. DTE, **Affiliated to Mumbai University**) PLOT #2&3, SECTOR 16, NEAR THANA NAKA, KHANDAGAON, NEW PANVEL, NAVI MUMBAI-410206, Tel.: +91 22 27481247/48 * Website: www.aiktc.org #### APPROVAL OF DISSERTATION This is to certify that the thesis entitled **DESIGN AND ANALYSIS OF PRESSURE VESSEL** Submitted by CHOUDHARY ZAHID ASLAM 17DME106 ANSARI FAZAL MUMTAZ AHMED 17DME109 KHAN ISMAIL ASLAM 17DME117 KHAN MOHD AQUIB ASHFAQUE 17DME120 In partial fulfillment of the requirements for the award of the Degree of Bachelor of Engineering in Mechanical Engineering, as prescribed by University of Mumbai approved. | (Internal Examiner) | (External Examiner) | |---------------------|---------------------| | | | | Date: | | #### ACKNOWLEDGEMENT After the completion of this work, we would like to give our sincere thanks to all those who helped us to reach our goal. It's a great pleasure and moment of immense satisfaction for us to express my profound gratitude to our guide **Prof. Rahul Thavai** whose constant encouragement enabled us to work enthusiastically. His perpetual motivation, patience and excellent expertise in discussion during progress of the project work have benefited us to an extent, which is beyond expression. We would also like to give our sincere thanks to **Prof. Zakir Ansari**, Head Of Department, **Prof.Rizwan Shaikh**, Project Co-Guide and Prof., Project co-ordinator from Department of Mechanical Engineering, Kalsekar Technical Campus, New Panvel, for their guidance, encouragement and support during a project. I take this opportunity to give sincere thanks to Mr.C. V Satam Manager/Owner in "Elgin Process Equipment Pvt Ltd.", for all the help rendered during the course of this work and their support, motivation, guidance and appreciation. I am thankful to **Dr. Abdul Razak H.**, Kalsekar Technical Campus New Panvel, for providing an outstanding academic environment, also for providing the adequate facilities. Last but not the least I would also like to thank all the staffs of Kalsekar Technical Campus (Mechanical Engineering Department) for their valuable guidance with their interest and valuable suggestions brightened us. CHOUDHARY ZAHID ASLAM 17DME106 ANSARI FAZAL MUMTAZ AHMED 17DME109 KHAN ISMAIL ASLAM 17DME117 KHAN MOHD AQUIB ASHFAQUE 17DME120 ### **Abstract** The oil and gas field deals with various processes such as refining, chemical mixings and blending, liquefaction, purification, storage of fluids and chemicals under stipulated pressure and temperature requires boilers, tubes and pipes, heat exchanger pressure vessels, etc. These have been a very important part of technical and technological systems such as chemical and reactive processes in Oil and gas field. This project work deals with a detailed design and analysis of Sulphuric acid tank taken as a problem definition from client Al Hammra – U.A.E. A detailed design of various parts of vessels like shell, closure, support, flanges, nozzles etc. Design is carried according to rules of ASME code section VIII; Division I. The ASME is an American Society of Mechanical Engineers that regulates the design and construction of boilers and pressure vessels. The BPVC is a standard that provides rules for the design, fabrication and inspection of boilers and pressure vessels. Code provide rules that permit the use of materials and alternative methods of construction that are not covered by existing BPVC rules. The analytical design as per client Al Hammra - U.A.E design data and general notes have been analysed and validated using Software tools such as PV-elite, Compress or ANSYS, and detailed modelling using Auto-CAD tool. It also deals with the study of various parts like flanges, support etc. Various methods of fabrication and testing such as LPT, RT, and Hydro Test are also included. NAVI MUMBAI - INDIA # **Table of Content** | • | List of Figures | | 9 | |---|-----------------|---|------| | • | List of Tables | | 10 | | • | Abbreviation ar | nd Notation | | | | | A | 10 | | 1 | Introduction | | 1-3 | | | 1.1 | Introduction of industry | | | | 1.2 | Sulphuric acid tank in oil and gas | | | | 1.3 | Needs and uses of sulphuric acid tank | | | 2 | Components of | industrial storage vessel | 4-6 | | | 2.1 | Shell | | | | 2.2 | Dish ends | | | | 2.3 | Nozzle | | | | 2.4 | Supports | | | 3 | Design procedu | ire | 7-63 | | | 3.1 | Problem Definition from client | | | | 2 | 3.1.1 Design data by client | | | | - | 3.1.2 Drawing by client | | | | MA | 3.1.3 Object and scope of project | | | | 3.2 | General design rules & material selection table | | | | 3.3 | Analytical & Software Calculations | | | | | 3.3.1 Design of torrisherical dish end | | | | | 3.3.2 Shell calculation | | | | | 3.3.3 Nozzle calculation | | | | | 3.3.4 Software calculation for saddle support | | | | 3.4 | Assembly of component | | | 4 | Design | Result and Conclusion | 64 | |-------|-------------------|---|-------| | | 4.1 | Design result | | | | 4.2 | Conclusion | | | 5 | Advant | ages; Disadvantages, & Future Expansion | 65 | | | 5.1 | Advantage | | | | 5.2 | Disadvantage | | | | 5.3 | Future expansion | | | • | Referen | nces | 66 | | • | Picture | gallery | 67-70 | | . 100 | NAVINAM - I - 154 | MUMBAI - NOIA | | # **List of Figures** | Figure | Title | Page no. | |--------|---|----------| | no. | | | | | | | | 1.1 | Sulphuric acid tank | 5 | | 2.1 | Shell | 4 | | 2.2 | Dish | 5 | | 2.3 | Nozzle | 5 | | 2.4 | Saddle | 6 | | 3.1.1 | Design data | /c. 11 | | 3.1.2 | Bill of material | - 11 | | 3.1.3 | Nozzle schedule | 12 | | 3.1.4 | Top view | 12 | | 3.1.5 | Saddle details | 13 | | 3.1.6 | Weld details | 17. | | 3.4.1 | Assembled vessel | 63 | | 5 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 - | | 3 | | 22 | | | | | | | 411 | | | | NAVI MUMBAI - INDIA | | | | - MUMBAI - M | | | | | | ## **List of Tables** | Table no. | Title | Page no. | |-----------|-----------------------------------|----------| | 3.1.1 | Design data | 7 | | 3.1.2 | Bill of Materials | 10 | | 3.1.3 | Nozzle schedule | 10 | | 3.2.1 | Material selection by stress | 16 | | 3.2.2 | Material selection by temperature | 17 | | 6.1.1 | Design result | 64 | # **Abbreviation and Notation** **ASME** American Society of Mechanical Engineers PV Pressure vessel TIG Tungsten Inert Gas MIG Metal Inert Gas Dye Penetrant DP RT Radiography Testing LPT Liquid Penetrant Testing **BPVC** Boilers & Pressure Vessel Codes Purchase Order PO НТ Hydro Test # 1.Introduction # 1.1 Introduction Of Elgin Process Equipment Pvt. Ltd, Rabale: ELGIN PROCESS EQUIPMENT PVT. LTD, RABALE are manufacturer and Supplier of plant/systems and Equiments.Mr. C.V. Satam is Mechanical Engineer. He started his career with Indo Berlin Industries who supplied the major plants to HOC Ltd. around 1970. He subsequently worked for manufacturers like G.R. Engineering & Lloyds Steel Industries Ltd. He has also worked with well-known consultants like Tata Consulting Engineering and Simon Carve India Ltd. Mr. Satam has diversified experience in the equipment industry. He has worked on Chemical, Petrochemical, Fertilizers, Nuclear Power, Thermal Power, Pharmaceuticals and Polyester Fiber Industry. He has been involved with marketing and sales, mechanical design, process design, estimation, purchase planning, production planning, production & quality control plant maintenance and ISO-9000 documentation. He promoted Process Equipment Engineering and Elgin Process Equipment Pvt. Ltd, which supplies: - 1. Air Drying Plants. - 2. Liquid Drying Plants. - 3. Low Pressure Dehumidifier - 4. Liquid Benzene Dryer (with Udhe and UOP for Nirma ltd.) He also designed and engineered Indias and Asia's first Benzene Vapour Recovery System in 2002, which won an international award. He supplied off gas dryer to ONGC through Duke- offshore and Burn Std. Co. In 2005 along with IIT and Clique Development Consultant was instrumental in designing equipment for India's largest Solar Water Heating System to Mahananda Dairy at Latur Road. He was felicitated by Thane Belapur Industries Association for his contribution to installing large common effluent treatment plant of Navi Mumbai. Mr. Satam has also traveled abroad to receive management
training. #### **MEMBERSHIPS:** 1. PPMAI - 2. Institution of Engineers - 3. Indian Welding Society Pressure vessels are vessels operating uncle an external or internal pressure exceeding 1.03 Kg/cm7g. Elgin has manufactured several pressure vessels for respected customers like FMC Corp., UB petroproducts, Reliance Group, etc for the past 20 years. We have performed under inspection by reputed international agencies like Bureau Veritas, RINA , TUV, DNV and almost all national agencies including EIL. #### **DESIGN/MANUFACTURING CODE** - Elgin products conform to the following codes: - 1. ASME Sec VIII Div 12. IS 2825 - They also provide vessels conforming to international codes like: 1. BS 5500 - 2. COADAP - 3. AD- Merkblatter 4. EN 13445 We can provide design verification on softwares like PVElite, COMPRESS, etc. • Material: We can provide vessels of following materials - 1. Carbon Steel - 2. Stainless Steel: SS304, SS 316, SS316L - 3. Clad Steel ## 1.2 Sulphuric Acid Tank in Oil and Gas Sulphuric acid storage tanks are manufacture from HTPE, XLPE, FRP, and carbon steel at 1.9 specific gravity secondary containment is required. H₂SO₄ is best stored out of direct sunlight. Tank capacity range from 35 to 100,000 gallons. price range from \$300 to \$150,000. # 1.3 Need and use of sulphuric acid tank. Commonly use in the CPI, sulphuric acid requires many special precautions to ensure its safe handling and storage figure. Storage tank in the sulphuric acid service require many special precaution to ensure safe operation and prevent accidental spills and ignition. The sulphuric acid tank is some time called "king of all chemicals", is widely used in the chemical process industries (CPI) Fig no: 1.1 Sulphuric acid tank # 2. Components ### 2.1 Shell It is a primary component that contains the pressure. Pressure vessel shells in the form of different plates are welded together to form a structure that has a common rotational axis. The main body of the pressure vessel is known as a shell. The process of pressure vessel generally occurs in this region. Generally manhole and hand hole is located in this region. No other nozzle is mainly mounted on it. Internal pressure of the vessel acts more in this region. Fig no: 2.1 Shell ### 2.2 Dish end The pressure vessel must be closed; so heads are manufactured typically on a curved rather than the flat. The reason is that curved configuration is stronger and allows heads to thinner, lighter and less expensive than the flat heads. The upper and lower part of a pressure vessel is known as a dish end. Mostly the inside area of dish remains empty since no processes of pressure vessel occurs. Mostly many of the nozzle is mounted on the dish end. The manufacturing process of dish end is easy because dish is a single piece and only a pressing process is to be done. Fig no: 2.2 Dish end # 2.3 Nozzle Nozzle is a cylindrical component that penetrates in the shell or head of a pressure vessel. It is the sub assembles part of pressure vessel which is mounted on a shall & dish as par requirement. Nozzle is used to transfer/receive working medium from the pressure vessel and mounted equipment like pressure indicator etc Fig no: 2.3 Nozzle # 2.4 Saddle Support Saddle supports are commonly used to support Horizontal pressure vessels. A Pressure vessels are subjected to pressure loading i.e. internal or external operating pressure different from ambient pressure. The pressure vessels are of horizontal or vertical type. For horizontal vessel the saddle supporting system plays an important role in the performance of the equipment. A proper saddle supporting system improves safety and facilitate to operate the pressure vessel at higher pressure conditions which finally leads to higher efficiency. Fig no: 2.4 Saddle supports NAVI MUM # 3. Design Procedure ## 3.1 Problem Definition To design and analyze the Sulphuric acid tank as per ASME section viii division 1 guidelines for the client specification. ## 3.1.1 Design data by client - 1) Client: Al Hamra water company, Al Jazeera Ras Al khaimah UAE. - 2) Design pressure (Atmospheric) P = 1.0132 bar, P = 1.0332 kg/cm² - 3) Design temperature: $T = 50^{\circ}$ = 122 $^{\circ}$ F - 4) Design code: ASME SEC VIII DIV 1, Vessel position = Horizontal - 5) Shell type: Cylindrical Shell - 6) Head: -Tori spherical - 7) Outside diameter: 2500mm | Mark | Qty | Denomination | DN (1) | Type | |-------|-----|---------------------------------|---------------|--------| | i | 1 | Outlet | 3" | Flange | | ii 🚽 | 2 | Visual level | 1" | Flange | | iii 🚽 | 1 | ulphuric acid load | 3" | Flange | | iv | 14 | Man hole | 24" | Flange | | V | 1 | Level Transmitter | 3" | Flange | | vi | 1 | Vent | 4" | Flange | | vii | 1 | Pressure safety Valve discharge | 3" | Flange | | viii | 1 | Overflow | 3" | Flange | | IX | 1 | Drain | 3" | Flange | Table no: 3.1.1 Design data - 8) Length of Shell: 5580mm - 9) Length of Shell &Dish: SA-516GR.76 - 10) Nozzle 7 flange material: SA-106B - 11) Capacity of Shell = 25m^3 - 12) Density of sulphuric acid = $1.83 \text{ kg/litres} = 1.83 \text{X} 10^3 \text{ kg/m}^3$ - 13) Radiography testing Efficiency: E = 1 - 14) Connection list | P.NO. | PARTICULARS | QYT. | MATERIAL | SIZE | REMARK. | |-------|-------------------|------|---------------------------|----------------------------------|---------| | 1. | SHELL | 1 | SA 516
GR.70
(LTCS) | 600ID X
1200LG X
8THK | _ | | 2. | DISH END | 2 | SA 516
GR.70
(LTCS) | 8THK
(NOM) X
6THK
(MIN) | - | | 3. | SUPPORT PAD PL | 2 | SA 516
GR.70 | 160 X 8
THK X 753 | - | | 4. | SADDLE PL | 2 | IS 2062 | 590 X 8
THK X 350 | _ | | 5. | BASE PL | 2 | IS 2062 | 620 X 140 X
8 THK | _ | | 6. | GUSSET PL | 4 | IS 2062 | 8 THK TO
SUIT | - | | 7. | EARTHING BOSS | 2 | SS 304 | 25ø X 25
LG | _ | | 8. | NAME PLATE
BKT | 1 | SS 304 | 232 X 125 X
3 THK | _ | | 9. | NAME PLATE | 1 | SS 304 | 150 X 110 X
2 THK | _ | | 10. | LIFTING LUG PAD | 2 | SA 516
GR70 | 165 X 85 X
8 THK | _ | | 11. | LIFTING LUG | 2 | IS 2062 GR
A | 110 X 110 X
10 THK | _ | | G/IIII C III | | | | T | | |--------------|--------------------|------------------|---------------|-------------|---| | 12. | PIPE FOR | 1 | SA 333 | 100 NB X | | | | NOZZ.N1 | | GR.6 | SCH80 X | _ | | | | | | 100 | | | 13. | FLANGE FOR | 1 | SA 350 | 100 NB X | | | | NOZZ.N1 | | Gr.LF2 | WNLG X | _ | | | | | | 300# | | | 14. | R.F. PAD FOR N1 | 1 | SA 516 | 200ø X | | | | | | GR.70 | 116ID X 8 | | | | | | | THK | _ | | 15. | PIPE FOR | 1 | SA 333 | 200NB X | | | | NOZZ.N2 | | GR.6 | SCH80 X | | | | 110221112 | - 18 | 511. 0 | 100 | _ | | 16. | FLANGE FOR | 1 | SA 350 | 200 NB X | | | 10. | NOZZ. N2 | PE- | Gr.LF2 | WNLG X | | | | NOZZ. NZ | (Set a | UI.LI Z | 300# | _ | | 17. | DI IND EL ANCE | | SA 250 | 200 NB X | | | 1/. | BLIND FLANGE | 111 | SA 350 | A second | | | | FOR N2 | 46.47 | Gr.LF2 | 300# X | _ | | | | | Dila | BLLT | | | 18. | GASKET FOR | 1 | 1S 2712 | TO SUIT | | | | NOZZ.N2 | STATE OF | Gr.0/1 | 200 NB | _ | | - 4 | 36 300 | | | FLANGE | | | 19. | STUD&NUT FOR | 8 | SA 320 | 7/8" VNC X | | | 100 | NOZZ.N2 | | Gr.L7 | 130 LG | _ | | 20. | R.F. PAD FOR | 1 | SA 516 | 320 O/DX | | | - 2 | NOZZ.N2 | | GR.70 | 222 IDX | _ | | -63 | □ | 5 8 | Dontoo | 8THK | , | | 21. | HANDLE FOR N2 | 2 | IS 2062 | 10ø X 300 | | | 3 | - | | | LG. | _ | | 22. | PIPE FOR | 2 | SA 333 | 15 NB X | | | | NOZZ.N3,N6 | 100 | GR.6 | SCH80 X | | | | 494 | | | 300 | _ | | 23. | FLANGE FOR | 2 | SA 350 Gr. | 15 X NB X | | | | NOZZ. N3,N6 | | LF2 | WNLG X | | | | "AVI 1 | Arren . | " IMDI | 300# | _ | | 24. | PIPE FOR | num B | SA 333 | 50 NB X SC | | | 21. | NOZZ.N4 | 1 | GR.6 | H80 X 100 | _ | | 25. | FLANGE FOR | 1 | GR.0 | 25 NB X | | | 23. | NOZZ.N4 | 1 | SA 350 Gr. | WNLG X | | | | 110 22. 114 | | | 300# | _ | | 26 | DI INC EL ANCE | 1 | LF2 | | | | 26. | BLING FLANGE | 1 | SA 350 | 25 NB X | _ | | | FOR N4 | | Gr.LF2 | 300# X BIIT | | | 27. | GASKET FOR N4 | 1 | IS 2712 | TO SUIT 25 | | | | | | Gr.0/1 | NB | _ | | 1 | | | | FLANGE | | | 28. | STUD&NUT FOR | 4 | SA 320 | 1/2 * VNC X | | |-----|--------------|---|--------|-------------|---| | | N4 | | Gr.L7 | 50 LG. | _ | | 29. | FLANGE FOR | 2 | SA 350 | 50 NB X | _ | | | NOZZ.N7,N8 | | Gr.LF2 | WING X | | | | | | | 300# | | Table no: 3.1.2 Bill of material | Sr.No | Nozzle | Nozzle Dia | Nozzle Schedule | |-------|--------------------|------------|-----------------| | 1 | N ₁ | 3" | 160 | | 2 | N ₂ | 3" | 160 | | 3 | N ₃ | 3" | 160 | | 4 | N ₄ | 6" | 160 | | 5 | N_5 | 4" | 160 | | 6 | N_6 | 6' | 160 | | 7 | MANHOLE / HANDHOLE | 24" | 160 | Table no: 3.1.3 Nozzle schedule # 3.1.2 Drawing by client Fig no: 3.1.1 General arrangement of Sulphuric acid Tank. Fig no: 3.1.2 Nozzle plan Fig no: 3.1.4 Bottom view Fig no: 3.1.5 Isometric view ## 3.1.3 Objective and Scope of Project - i) To understand components of General arrangement drain pot and its applications. - ii) To design the components of industrial water heater vessel by analytical method in reference with A.S.M.E section viii Div. 1. - iii) To validate the design using software PV-Elite version 2017. - iv) Comparison of analytical and software calculation. - v) Modelling of vessel in PV-Elite software. # 3.2 GENERAL DESIGN RULES MATERIAL SELECTION FROM ASME SECTION VIII DIV.1 AND SECTION II PART D: #### 3.2.1 Material selection Selection of materials is important activity that are essential for structural design. The selection of materials for ASME industrial storage vessels must be code approved. A metallurgical engineer usually specified the most economical materials at the lowest cost and/or lowest maintenance cost that will be satisfactory under operating conditions. There are many factors supported by experience and laboratory test results that must be considered in selecting the most suitable materials. They include the following: - Corrosion Resistance - strength
Requirements - Cost - Availability - Ease of Fabrication - Cost of Future Maintenance - Equipment Flexibility. The range of materials used for industrial storage vessels is wide and includes, but is not limited to, the following: - Carbon steel (with less than 0.25% carbon). - Carbon manganese steel (giving higher strength than carbon steel). - Low alloy steels. - High alloy steels. - Austenitic stainless steels. - Non-ferrous materials (aluminum, copper, nickel and alloys) - High duty bolting materials. # 3.2.2 UG-16 GENERAL DESIGN (Reference ASME SECTION VIII DIV.1 Page no.13): - (a) The design of pressure vessels and vessel parts shall conform to the general design requirements in the following paragraphs and in addition to the specific requirements for Design given in the applicable Parts of Subsections B and C. - (b) Minimum Thickness of Pressure Retaining Components. Except for the special provisions listed below, the minimum thickness permitted for shells and heads, after forming and regardless of product form and material, shall be 1/16 in. (1.5 mm) exclusive of any corrosion allowance. Exceptions are: - (1) The minimum thickness does not apply to heat transfer plates of plate-type heat exchangers; - (2) This minimum thickness does not apply to the inner pipe of double pipe heat exchangers nor to pipes and tubes that are enclosed and protected from mechanical damage by a shell, casing, or ducting, where such pipes or tubes are NPS 6 (DN 150) and less. This exemption applies whether or not the outer pipe, shell, or protective element is constructed to Code rules. When the outer protective element is not provided by the Manufacturer as part of the vessel, the Manufacturer shall note this on the Manufacturer's Data Report, and the owner or his designated agent shall be responsible to assure that the required enclosures are installed prior to operation. Where Pipes and tubes are fully enclosed; consideration shall be given to avoiding build-up of pressure within the protective chamber due to a tube/pipe leak. All other pressure parts of these heat exchangers that are constructed to Code rules must meet the 1/16 in. (1.5 mm) minimum thickness requirements. - (3) The minimum thickness of shells and heads of unfired steam boilers shall be 1/4 in. (6 mm) exclusive of any corrosion allowance; - (4) The minimum thickness of shells and heads used in compressed air service, steam service, and water service, made from materials listed in Table UCS-23, shall be 3/32 in. (2.5 mm) exclusive of any corrosion allowance. - (5) This minimum thickness does not apply to the tubes in air cooled and cooling tower heat exchangers if all the following provisions are met: - a) The design thickness so that the thickness of the material furnished is not more than the smaller of 0.01 in. (0.25 mm). - (b) Pipe Under tolerance. If pipe or tube is ordered by its nominal wall thickness, the manufacturing under tolerance on wall thickness shall be taken into account except for nozzle wall reinforcement area requirements. - (c) After the minimum wall thickness is determined, it shall be increased by an amount sufficient to provide the manufacturing under tolerance allowed in the pipe or tube specification. - (d) Corrosion Allowance in Design Formulas. The dimensional symbols used in all design formulas throughout this Division represent dimensions in the corroded condition. NAVI MUMBAI - INDIA Table 2A (Cont'd) Section III, Division 1, Classes 1 and MC, and Section III, Division 3, Classes TC and SC Design Stress Intensity Values S_m for Ferrous Materials | Line
No. | Min.
Tensile
Strength,
MPa | Min.
Yield
Strength,
MPa | Max. Temp. Limit
(SPT = Supports
Only) | External
Pressure
Chart No. | Notes | |-------------|-------------------------------------|-----------------------------------|--|-----------------------------------|------------| | 1 | 415 | 240 | 371 | CS-2 | E2 | | 2 | 415 | 250 | 371 (SPT) | CS-2 | E2 | | 3 | 415 | 255 | 371 | CS-2 | E2 | | 4 | 415 | 255 | 371 | CS-2 | E2 | | 5 | 450 | 240 | 371 | CS-2 | - | | 6 | 450 | 240 | 371 | CS-2 | - | | 7 | 450 | 240 | 371 | CS-2 | - | | 8 | 450 | 240 | 371 | CS-2 | G1, G4 | | 9 | 450 | 240 | 371 | CS-2 | G1, G4 | | 10 | 450 | 240 | 371 | CS-2 | G1, G4 | | 11 | 450 | 240 | 371 | CS-2 | G1, G4 | | 12 | 450 | 310 | 371 | CS-2 | E2 | | 13 | 450 | 310 | 371 | CS-2 | E2, G1, G2 | | 14 | 485 | 250 | 371 | CS-2 | _ | | 15 | 485 | 250 | 371 | CS-2 | | | 16 | 485 | 250 | 371 | CS-2 | - | | 17 | 485 | 250 | 371 | CS-2 | - | | 18 | 485 | 250 | 371 | CS-2. | - | | 19 | 485 | 250 | 371 | CS-2
CS-2 | | | 20 | 485 | 250 | 371 | CS-2 | 9 | | 21 | 485 | 250 | 371 | CS-2 | 20- | | 22 | 485 | 250 | 371 | CS-2 | 50 | | 23 | 485 | 250 | 371 | CS-2 | . 6 | | 24 | 485 | 260 | 371 | - CS-2 | 200 | | 25 | 485 | 260 | 371 | CS-2 | | | 26 | 485 | 260 | 371 | CS-2 | G1, G3 | NAVI MUMBAI - INDIA # Table 1A (Cont'd) Section I; Section III, Classes 2 and 3;* Section VIII, Division 1; and Section XII Maximum Allowable Stress Values S for Ferrous Materials (*See Maximum Temperature Limits for Restrictions on Class) | | | | ли риса | ability and Max. Te
(NP = Not Per | | units | | | |------|-----------------|---------------|---------|--------------------------------------|--------|-------|-----------|------------| | | Min. | M1. | | (SPT = Support | | | | | | | Min.
Tensile | Min.
Yield | | (arr - support | , | | External | | | Line | Strength, | Strength, | | | | | Pressure | | | No. | MPa | MPa | I | Ш | VIII-1 | XII | Chart No. | Notes | | 1 | 415 | 205 | 649 | NP | 649 | NP | CS-2 | T4 | | 2 | 415 | 205 | 649 | NP | 649 | NP | CS-2 | T4 | | 3 | 415 | 205 | 649 | NP | 649 | NP | CS-2 | T4 | | 4 | 415 | 205 | 649 | NP | 649 | NP | CS-2 | T4 | | 5 | 415 | 205 | 649 | 371 | 649 | NP | CS-2 | TS | | 6 | 415 | 205 | 649 | NP | 649 | NP | CS-2 | TS | | 7 | 415 | 205 | 649 | 371 | 649 | NP | CS-2 | TS | | 8 | 415 | 205 | 649 | 371 | 649 | NP | CS-2 | TS | | 9 | 585 | 380 | 649 | NP | 649 | NP | CS-3 | T4 | | 10 | 585 | 380 | NP | NP | 649 | NP | CS-3 | T4 | | 11 | 620 | 415 | 649 | 371 (SPT) | 649 | NP. | CS-3 | G1, T4 | | 12 | 620 | 415 | NP | 371 | NP | NP | CS-3 | G17 | | 13 | 585 | 415 | 649 | 371 | 649 | NP | CS-3 | T 7 | | 14 | 585 | 415 | 649 | NP | 649 | NP | CS-3 | T7 | | 15 | 585 | 415 | 649 | 371 | 649 | NP | CS-3 | T7 | | 16 | 585 | 415 | 649 | 371 | 649 | NP | CS-3 | T7 | | 17 | 585 | 415 | 649 | NP | NP | NP | CS-3 | T7 | | 18 | 585 | 415 | 649 | NP | NP | NP | CS-3 | T7 | | 19 | 585 | 415 | 649 | 371 | 649 | NP | CS-3 | T7 | | 20 | 585 | 415 | 649 | NP | 649 | NP | CS-3 | T7 | | 21 | 585 | 415 | 649 | NP | 649 | NP | CS-3 | T7 | | 22 | 585 | 415 | 649 | NP | 649 | NP | CS-3 | T7 | | 23 | 585 | 415 | 649 | NP | NP | NP | CS-3 | T7 | | 24 | 585 | 415 | 649 | NP | NP | NP | CS-3 | T7 | | 25 | 585 | 415 | 649 | 371 | 649 | NP | CS-3 | T7 | | 26 | 585 | 415 | 649 | NP | 649 | NP | CS-3 | T7 | | 27 | 380 | 170 | NP | NP | 427 | NP | CS-1 | 20 | | 28 | 380 | 170 | NP | NP | 427 | NP | CS-1 | - 1 | | 29 | 380 | 170 | NP | NP | 427 | NP | CS-1 | | | 30 | 380 | 170 | NP | NP | 427 | 343 | CS-1 | G24 | | 31 | 380 | 170 | NP- | NP | 427 | 343 | CS-1 | 1923 | Table no: 3.2.2 # 3.3 Analytical and Software calculation ## 3.3.1 DESIGN OF TORRISPHERICAL DISH END: Analytical calculations of shell using ASME Section viii Div.1 For Torrispherical head, $t = PLM \div (2SE-0.2P)$ L = Inside spherical or crown radius for torrispherical M = Factor based on L/r S = Stress E = Efficiency of joint P = Internal pressure Type: Horizontal Material: SA516 Gr.70 Required thickness, t = $PLM \div (2SE-0.2P)$ Ro = D \div 2 = $2500 \div 2 = 1250$ m $t = (1.0332 \cdot 1250) \div [(1638.15 \cdot 1) + (0.4 \cdot 1.0332)]$ t = 0.788 mm Adding C.A. 3mm t = 0.788 + 3 t = 3.788mm Nominal available (standard) in market for plate 4mm OR 6mm Taking t = 6mm. Software PV-elite calculation for Torispherical Dish end: #### **Element Thickness, Pressure, Diameter and Allowable Stress:** Int. Press Nominal Total Corr Element Allowable From To + Liq. Hd Thickness Allowance Diameter Stress(SE) KPa. mm. mm. mm. N./mm² LEFT DISH 101.32 8 3 2500 137.9 SHELL 101.32 6 3 2500 137.9 RIGHT DISH 101.32 8 3 2500 137.9 #### **Element Required Thickness and MAWP:** Design M.A.W.P. M.A.P. Minimum Required From To Pressure Corroded New & Cold Thickness Thickness KPa. KPa. KPa. mm. mm. LEFT DISH 101.32 145.825 371.927 6 5.52155 SHELL 101.32 329.675 659.981 6 4.5 RIGHT DISH 101.32 145.825 371.927 6 5.52155 Minimum 145.825 371.920 MAWP: 145.825 KPa., limited by: RIGHT DISH. #### **Internal Pressure Calculation Results:** ASME Code, Section VIII Division 1, 2017 Torispherical Head From 10 To 20 SA- 516 70, UCS-66 Crv. B at 50 °C LEFT DISH Material UNS Number: K02700 Inside Corroded Head Depth [h]: = L - sqrt((L - Di / 2) * (L + Di / 2 - 2 * r)) = 2515.0- sqrt((2515.0-2506.0/2)*(2515.0+2506.0/2-2*153.72)) = 425.209 mm. M factor for Torispherical Heads (Corroded): = (3+sqrt((L+C)/(r+C)))/4 per Appendix 1-4 AI - INDIA (b & d) = (3+sqrt((2512.0+3.0)/(150.72+3.0)))/4 = 1.7612 #### Appendix 1-4(f) Calculations (ts/L = 0.00119) Note: Please check the temperature limit given in Table 1-4.3 of the code. If the max. design temp. exceeds the temp. limit, see U-2(g). $$r/D = 0.06134$$: $C1 = 0.48508$: $C2 = 1.25000$ Required Thickness Calculation: Final iteration: Elastic Buckling Stress (Se): $$= C1 * Et * (ts/r)$$ $$= (0.485 * 201058.5 * 0.016)$$ = 1599.863 N./mm² $$a = 0.5 * D - r = 1099.280$$ mm. $$b = L - r = 2361.280$$ mm. Beta = $$COS(A/B) = 1.087$$ rad. Ph1 = $$SQRT(L*ts) / r =$$ 0.518 rad. $$c = a / COS(Beta-Phi) = 1304.452$$ mm. Re = c + r = 1458.172 mm. Buckling Internal Pressure (Pe): - = (Se * ts) / (C2 * Re * ((0.5 * Re / r) 1)) - =(1599.9*2.522)/(1.25*1458.172*((0.5*1458.172/153.72)-1)) - = 591.288 KPa. Yield Internal Pressure (Py): - = (Sy * ts) / (C2 * Re * ((0.5 * Re
/ r) 1)) - =(255.0*2.522)/(1.25*1458.172*((0.5*1458.172/153.72)-1)) - = 94.258 KPa. Knuckle Failure Internal Pressure (Pck): - = 0.408 * Py + 0.192 * Pe - = 0.408 * 94.258 + 0.192 * 591.288 - = 151.985 KPa. Allowable Pressure (Pa): - = Pck / 1.5 - = 151.985/1.5 - = 101.323 KPa. App 1-4(f) Calculated Required Thick. (TR): 2.5216 mm. #### MAWP Calculation (ts/L = 0.00119) Elastic Buckling Stress (Se): - = C1 * Et * (ts/r) - = (0.485 * 201058.5 * 0.02) - = 1903.396 N./mm² mm. $$b = L - r = 2361.280$$ mm. Beta = $$COS(A/B) = 1.087$$ rad. $$Ph1 = SQRT(L*ts) / r =$$ 0.565 rad. $$c = a / COS(Beta-Phi) = 1267.792$$ mm. $$Re = c + r = 1421.512 \text{ mm}.$$ Buckling Internal Pressure (Pe): $$= (Se * ts) / (C2 * Re * ((0.5 * Re / r) - 1))$$ 410HI-11 - =(1903.4*3.0)/(1.25*1421.512*((0.5*1421.512/153.72)-1)) - = 886.772 KPa. #### Yield Internal Pressure (Py): - = (Sy * ts) / (C2 * Re * ((0.5 * Re / r) 1)) - =(255.0*3.0)/(1.25*1421.512*((0.5*1421.512/153.72)-1)) - = 118.818 KPa. #### Knuckle Failure Internal Pressure (Pck): - = 0.408 * Py + 0.192 * Pe - = 0.408 * 118.818 + 0.192 * 886.772 - = 218.738 KPa. ### Maximum Allowable Working Pressure (MAWP): - = Pck / 1.5 - =218.738/1.5 - = 145.825 KPa. ## Straight Flange Required Thickness: = 3.921 mm. Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 3.878 % #### **MDMT Calculations in the Knuckle Portion:** Govrn. thk, $$tg = 6.0$$, $tr = 2.342$, $c = 3.0$ mm., $E^* = 1.0$ Thickness Ratio = $$tr * (E*)/(tg - c) = 0.781$$, Temp. Reduction = 12 °C Min Metal Temp. w/o impact per UCS-66, Curve B -29 °C Min Metal Temp. at Required thickness (UCS 66.1) - #### 41 °C MDMT Calculations in the Head Straight **Flange:** Govrn. thk, $$tg = 8.0$$, $tr = 1.326$, $c = 3.0$ mm., $$E^* = 1.0$$ Thickness Ratio = tr * (E*)/(tg - c) = 0.265, Temp. Reduction = 78 °C Min Metal Temp. w/o impact per UCS-66, Curve B -29 °C Min Metal Temp. at Required thickness (UCS 66.1) -104 °C ## **Software PV-elite calculation for Torispherical shell end:** Fig no: 3.3.1 Shell ## 3.3.2 Shell calculation Analytical calculation of Dish end using ASME Section viii Div.1 Type:- 2:1 rial UNS Number: K02700 Inside Corroded Head depth [h]: - = L sqrt((L Di/2)*(L + Di/2 2*r)) - = 2515.0-sqrt((2515.0-2506.0/2)*(2515.0+2506.0/2-2*153.72)) - =425.209 mm. M factor for Torispherical Heads (Corroded): = (3+sqrt((L+C)/(r+C)))/4 per Appendix 1-4 (b & d) PV Elite® 2019 FileName: NOZZEL AND DISH END Page 19 of 70 External Pressure Calculations: Step: 4 10:50pm Mar 2,2020 - = (3+sqrt((2512.0+3.0)/(150.72+3.0)))/4 - = 1.7612 Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: - = ((2*S*E*t)/(M*L+0.2*t))/1.67 per Appendix 1-4 (d) - =((2*137.9*1.0*3.0)/(1.7612*2515.0+0.2*3.0))/1.67 - = 88.878 KPa. Maximum Allowable External Pressure [MAEP]: - = min(MAEP, MAWP) - $= \min(17.74, 88.8781)$ - = 17.739 KPa. #### **Element and Detail Weights:** Element Element Corroded Corroded Extra due From To Metal Wgt. ID Volume Metal Wgt. ID Volume Misc % kg. cm³ kg. cm³ kg. 10 20 388.213 1509769 243.395 1528458 ... 20 30 2141.75 28721270 1072.15 28859298 ... 30 40 388.213 1509769 243.395 1528458 ... Total 2918 31740808.00 1558 31916214.00 0 #### Weight of Details: Weight of X Offset, Y Offset, From Type Detail Dtl. Cent. Dtl. Cent. Description kg. mm. mm. 20 Sadl 69.173 600 1555 LEFT SADDLE 20 Sadl 69.173 5250 1555 RIGHT SADDLE 20 Nozl 8.71776 600 1288.1 NOZZLE1 20 Nozl 8.71776 5250 1288.1 N2 20 Nozl 135.429 2950 1554.8 Noz N3 Fr20 20 Nozl 7.77107 2950 1288.1 Noz N4 Fr20 20 Nozl 11.9983 5600 1300.8 Noz N5 Fr20 20 Nozl 7.77107 4800 1288.1 Noz N6 Fr20 20 Nozl 7.77107 4400 1288.1 Noz N7 Fr20 Total Weight of Each Detail Type: Saddles 138.3 Nozzles 188.2 Sum of the Detail Weights 326.5 kg. #### Weight Summation Results: (kg.) Fabricated Shop Test Shipping Erected Empty Operating Main Elements 2918.2 2918.2 2918.2 2918.2 2918.2 2918.2 Saddles 138.3 138.3 138.3 138.3 138.3 Nozzles 188.2 188.2 188.2 188.2 188.2 188.2 Test Liquid ... 31721.4 Totals 3244.7 34966.1 3244.7 3244.7 3244.7 3244.7 #### **Weight Summary:** Fabricated Wt. - Bare Weight without Removable Internals 3244.7 kg. Shop Test Wt. - Fabricated Weight + Water (Full) 34966.1 kg. Shipping Wt. - Fab. Weight + removable Intls.+ Shipping App. 3244.7 kg. Erected Wt. - Fab. Wt + or - loose items (trays, platforms etc.) 3244.7 kg. Ope. Wt. no Liq - Fab. Weight + Internals. + Details + Weights 3244.7 kg. Operating Wt. - Empty Weight + Operating Liq. Uncorroded 3244.7 kg. Oper. Wt. + CA - Corr Wt. + Operating Liquid 1885.5 kg. Field Test Wt. - Empty Weight + Water (Full) 34966.1 kg. Note: The Corroded Weight and thickness are used in the Horizontal Vessel Analysis (Ope Case) and Earthquake Load Calculations. Outside Surface Areas of Elements: Surface From To Area cm² 10 20 62990.7 20 30 461663 30 40 62990.7 Total 587644.875 cm² # Software calculation for dish Mate Bottom dish Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) =(22.500*603.2000*0.993)/(2*1406.14*1.00-0.2*22.500) =4.7998+1.6000=6.3998 mm NAVI MUMBAI - INDIA Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: $$= (2*S*E*t)/(Kcor*D+0.2*t)$$ per Appendix 1-4 (c) $$= (2*1406.14*1.00*4.9000)/(0.993*603.2000+0.2*4.9000)$$ $$= 22.969 \text{ kgf/cm}^2$$ Maximum Allowable Pressure, New and Cold [MAPNC]: $$= (2*S*E*t)/(K*D+0.2*t)$$ per Appendix 1-4 (c) $$=(2*1406.14*1.00*6.5000)/(1.000*600.0000+0.2*6.5000)$$ $$= 30.400 \text{ kgf/cm}^2$$ Actual stress at given pressure and thickness, corroded [Sact]: $$= (P*(Kcor*D+0.2*t))/(2*E*t)$$ $$=(22.500*(0.993*603.2000+0.2*4.9000))/(2*1.00*4.9000)$$ $$= 1377.430 \text{ kgf/cm}^2$$ Straight Flange Required Thickness: $$= (P*R)/(S*E-0.6*P) + c$$ per UG-27 (c)(1) $$=(22.500*301.6000)/(1406.14*1.00-0.6*22.500)+1.600$$ $$= 6.473 \text{ mm}$$ Straight Flange Maximum Allowable Working Pressure: $$= (S*E*t)/(R+0.6*t)$$ per UG-27 (c)(1) $$= (1406.14 * 1.00 * 4.9000)/(301.6000 + 0.6 * 4.9000)$$ $$= 22.625 \text{ kgf/cm}^2$$ Factor K, corroded condition [Kcor]: = $$(2 + (Inside Diameter/(2 * Inside Head Depth))^(2))/6$$ $$= (2 + (603.200/(2 * 151.600))^{(2)})/6$$ = 0.992983 Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 4.632 % MDMT Calculations in the Knuckle Portion: Govrn. thk, $$tg = 6.500$$, $tr = 4.826$, $c = 1.6000$ mm, $E^* =$ 1.00 Stress Ratio = $$tr * (E*)/(tg - c) = 0.985$$, Temp. Reduction = $1 \,^{\circ}$ C Min Metal Temp. w/o impact per UCS-66, Curve B -29 °C Min Metal Temp. at Required thickness (UCS 66.1) -30 °C MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 6.500, tr = 4.900, c = 1.6000 mm, $E^* =$ 1.00 Stress Ratio = tr * (E*)/(tg - c) = 1.000, Temp. Reduction = $0 \, ^{\circ}$ C Min Metal Temp. w/o impact per UCS-66, Curve B -29 °C Top dish Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) =(22.500*603.2000*0.993)/(2*1406.14*1.00-0.2*22.500) =4.7998+1.6000=6.3998 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c) = (2*1406.14*1.00*4.9000)/(0.993*603.2000+0.2*4.9000) $= 22.969 \text{ kgf/cm}^2$ Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c) = (2*1406.14*1.00*6.5000)/(1.000*600.0000+0.2*6.5000) $= 30.400 \text{ kgf/cm}^2$ Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Kcor*D+0.2*t))/(2*E*t) =(22.500*(0.993*603.2000+0.2*4.9000))/(2*1.00*4.9000) $= 1377.430 \text{ kgf/cm}^2$ Straight Flange Required Thickness: = (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1) =(22.500*301.6000)/(1406.14*1.00-0.6*22.500)+1.600 = 6.473 mm Straight Flange Maximum Allowable Working Pressure: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (1406.14 * 1.00 * 4.9000)/(301.6000 + 0.6 * 4.9000) $= 22.625 \text{ kgf/cm}^2$ Factor K, corroded condition [Kcor]: = $(2 + (Inside Diameter/(2 * Inside Head Depth))^(2))/6$ $= (2 + (603.200/(2 * 151.600))^{(2)})/6$ = 0.992983 Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 4.632 % MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 6.500, tr = 4.826, c = 1.6000 mm, $E^* =$ 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.985, Temp. Reduction = $1 \, ^{\circ}$ C Min Metal Temp. w/o impact per UCS-66, Curve B -29 °C Min Metal Temp. at Required thickness (UCS 66.1) -30 °C MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 6.500, tr = 4.900, c = 1.6000 mm, $E^* = 1.00$ Stress Ratio = $tr * (E^*)/(tg - c)$ = 1.000, Temp. Reduction = 0 °CMin Metal Temp. w/o impact per UCS-66, Curve B -29 °C Fig no: 3.2.1 Dish end # 3.3.3 Nozzle calculation #### **Analytical Calculation for nozzle** 1. Nozzle $N_1 = 3$ " NB From chart, OD = 88.9mm $$Ro = OD \div 2 Ro = 88.9 \div$$ 2 Ro = 44.45 mm a) $$T = P RO \div (SE +$$ $$0.4P) P = 1.0332 \text{ Kg/cm}^2$$ $$S = 1638.15 \text{ kg/cm}^2 \text{ E} =$$ 1 $$t = (1.0332 \times 44.450) \div ((1638.15 \times 1) + (0.4 \times 1.0332))$$ $$t = 0.0280$$ mm(1) b) As per UG - 45 Table, Ref. ASME - Section viii, Div. -1, Page 53 For 3" NB nozzle, $$t = 4.80$$ mm \dots (2) .. (A) Taking greater of (1) and (2) $$t = 4.80 \text{mm}$$ - c) Minimum required Shell thickness, t = 4.329mm (3) - d) Minimum nozzle wall thickness = Standard wall thickness + C.A. For 3" NB nozzle, Standard thickness = 5.44mm (from schedule chart) C.A. = 3mm Therefore, Minimum nozzle thickness = Standard thickness + C.A. $$= 5.49 + 3$$ $$= 8.49 \text{mm}$$ (4) e) Selecting minimum of (3) and (4) $$t = 4.329 \text{mm}$$ (B) f) Selecting greater of A & B $$t = 4.80 \text{mm}$$ (C) g) Final wall thickness = equation (C) + C.A. $$=4.80+3$$ = 7.80mm - h) Therefore, Final schedule thickness from table = 11.12mm and schedule = 160mm - 2. Nozzle 4" NB From chart, OD = 114.3mm $$Ro = OD \div 2 Ro = 114.3 \div$$ $$2 \text{ Ro} = 57.15 \text{mm}$$ a) $$T = P RO \div (SE + 0.4P)$$ $$P = 1.0332 \text{
Kg/cm}^2$$ $$S = 1638.15 \text{ kg/cm}^2$$ $\mathbf{E} = 1$ $$t = (1.0332 \times 57.15) \div ((1638.15 \times 1) + (0.4 \times 1.0332))$$ $$t = 0.036$$ mm (1) b) As per UG – 45 Table, Ref. ASME – Section viii, Div. -1, Page 53 For 4" NB nozzle, $$t = 5.27$$ mm (2) Taking greater of (1) and (2) $$t = 5.27 \text{mm}$$ (A) - c) Minimum required Shell thickness, t = 4.329mm (3) - d) Minimum nozzle wall thickness = Standard wall thickness + C.A. For 4" NB nozzle, Standard thickness = 6.02mm (from schedule chart) C.A. = 3mm Therefore, Minimum nozzle thickness = Standard thickness + C.A. =6.02+3 = 9.02mm (4) e) Selecting minimum of (3) and (4) t = 4.329 mm (B) f) Selecting greater of (A) & (B) t = 5.27 mm (C) g) Final wall thickness = equation (C) + C.A. =5.27+3 = 8.27 mm h) Therefore, Final schedule thickness from table = 11.12mm and schedule = 120mm # Software calculation for nozzle # Input Values, Nozzle Description: N1 From: 20 Pressure for Reinforcement Calculations 22.500 kgf/cm² Temperature for Internal Pressure Temp 55 $^{\circ}C$ Shell Material SA-516 70 Shell Allowable Stress at Temperature Sv1406.1 4 kgf/cm² Shell Allowable Stress At Ambient Sva1406.1 4 kgf/cm² Inside Diameter of Cylindrical Shell D 600.00 mm Shell Finished (Minimum) Thickness t 6.5000 mm Shell Internal Corrosion Allowance c 1.6000 mm Shell External Corrosion Allowance со 0.0000 mm Distance from Bottom/Left Tangent 23.0800 cm User Entered Minimum Design Metal Temperature -28.89 °C **Type of Element Connected to the Shell: Nozzle** Material [Impact Tested] SA-333 6 Material UNS Number K0300 6 Material Specification/Type Smls. &wld. pipe Allowable Stress at Temperature Sn 1202.25 kgf/cm² Allowable Stress At Ambient Sna1202.25 kgf/cm² Diameter Basis (for trealc only) ID Layout Angle 90.00 deg Diameter 2.0000 in. Size and Thickness Basis Nominal Thickness | Flange Material [Normalized] | SA-333 6 | |--|-----------------------------| | Flange Type L | ong Weld Neck | | Corrosion Allowance | can 1.6000 mm | | Joint Efficiency of Shell Seam at Nozzle | E1 1.00 | | Joint Efficiency of Nozzle Neck | En 1.00 | | | | | | A | | Outside Projection | no 210.0000 mm | | Weld leg size between Nozzle and Pad/Sl | nell Wo | | CEKAK AT | 10.0000 | | mm Groove weld depth between Nozzle a | and Vessel | | Wgnv0.0000 mm ASME Code Weld Typ | e per UW-16 | | A THE STREET | None | | 25 223 | | | Class of attached Flange | 300 | | Grade of attached Flange | GR 1.1 | | Nozzle Sketch (may not represent actua | al weld type/configuration) | | E* | Z2 17/2/2017 | | 3 | | | 200 | | | | | | | | | VAVI MIII | NBAI - INDIA | | | NBAI - III | | | | | / \ | | | | | | | | | | | | | | tn 160 #### Abutting/Set-on Nozzle No Pad # Reinforcement CALCULATION, Description: N1 ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 1.687 in. Actual Thickness Used in Calculation 0.344 in. Reqdthk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(Sv*E-0.6*P) per UG-27 (c)(1) =(22.50*301.6000)/(1406*1.00-0.6*22.50) =4.8728 mm Reqdthk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1) =(22.50*23.02)/(1202*1.00-0.6*22.50) = 0.4358 mm UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 2.0358 mm Wall Thickness per UG16(b), tr16b = 3.1000 mm Wall Thickness, shell/head, internal pressure trb1 = 6.4728 mm Wall Thickness tb1 = max(trb1, tr16b) = 6.4728 mm Wall Thickness tb2 = max(trb2, tr16b) = 3.1000 mm Wall Thickness per table UG-45 tb3 = 5.0200 mm Determine Nozzle Thickness candidate [tb]: $= \min[tb3, \max(tb1,tb2)]$ $= \min[5.020, \max(6.4728, 3.1000)]$ = 5.0200 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: $= \max(ta, tb)$ $= \max(2.0358, 5.0200)$ = 5.0200 mm Available Nozzle Neck Thickness = 0.875 * 8.738 = 7.645 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of Nozzle-Shell/Head Weld for the Nozzle (Impact tested): Impact Test Temperature provided per Specification -46 °C Governing MDMT of all the sub-joints of this Junction: -46 °C Weld Size Calculations, Description: N1 Intermediate Calc. for nozzle/shell Welds Tmin4.9000 mm NAVIMI **Results Per UW-16.1:** Required Thickness Actual Thickness Nozzle Weld 3.4300 = 0.7 * tmin. 7.0700 = 0.7 * Wo mm #### Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 22.625 kgf/cm² The Drop for this Nozzle is: 1.5202 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 218.0201 mm INPUT VALUES, Nozzle Description: N3 From : 20 Pressure for Reinforcement Calculations P 22.500 kgf/cm² Temperature for Internal Pressure Temp 55 °C Shell Material SA-516 70 Shell Allowable Stress at Temperature Sv1406.14 kgf/cm² Shell Allowable Stress At Ambient Sva1406.14 kgf/cm² Inside Diameter of Cylindrical Shell D 600.00 mm Shell Finished (Minimum) Thickness t 6.5000 mm Shell Internal Corrosion Allowance c 1.6000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 45.0800 cm User Entered Minimum Design Metal Temperature -28.89 °C ## **Type of Element Connected to the Shell: Nozzle** Material [Impact Tested] SA-333 6 Material UNS Number X0300 6 Material Specification/Type Smls. &wld. pipe Allowable Stress at Temperature Sn 1202.25 kgf/cm² Allowable Stress At Ambient Sna1202.25 kgf/cm² Diameter Basis (for trealc only) **ID** Layout Angle 90.00 deg | Diameter | 0.5000 in. | |-------------------------------------|---------------------------------| | Size and Thickness Basis | | | Nominal Nominal Thickness | tn 160 | | Flange Material [Normalized] | SA-333 6 | | Flange Type | Long Weld Neck | | Corrosion Allowance | can | | | 1.6000 | | mm Joint Efficiency of Shell Seam a | t Nozzle | | | EI | | | 1.00 | | Joint Efficiency of Nozzle Neck | En 1.00 | | " WISELLA | A ANTICA | | S Malar & | | | Outside Projection | ho 210.0000 mm | | Weld leg size between Nozzle and P | ad/Shell Wo | | 13 68 | 10.0000 | | mm Groove weld depth between Noz | zzle and Vessel | | Wgnv0.0000 mm ASME Code Weld | l Type per UW-16 | | A IIIII | None | | 3 | 3/4 | | Class of attached Flange | 300 | | Grade of attached Flange | GR 1.1 | | Nozzle Sketch (may not represent | actual weld type/configuration) | | NAV. | Alnu | | NAVIN | IUMBAI - INDIA | | | | | | | | 11 | | | H | | | N.I. | | | | | | / _\ | | | | | ## Abutting/Set-on Nozzle No Pad # Reinforcement CALCULATION, Description: N3 ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 0.466 in. Actual Thickness Used in Calculation 0.187 in. Reqdthk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] $$= (P*R)/(Sv*E-0.6*P)$$ per UG-27 (c)(1) $$=(22.50*301.6000)/(1406*1.00-0.6*22.50)$$ =4.8728 mm Reqdthk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1) =(22.50*7.52)/(1202*1.00-0.6*22.50) = 0.1423 mm # UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 1.7423 mm Wall Thickness per UG16(b), tr16b = 3.1000 mm Wall Thickness, shell/head, internal pressure trb1 = 6.4728 mm Wall Thickness tb1 = max(trb1, tr16b) = 6.4728 mm Wall Thickness tb2 = max(trb2, tr16b) = 3.1000 mm Wall Thickness per table UG-45 tb3 = 4.0130 mm Determine Nozzle Thickness candidate [tb]: $= \min[tb3, \max(tb1,tb2)]$ $= \min[4.013, \max(6.4728, 3.1000)]$ = 4.0130 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: $= \max(ta, tb)$ $= \max(1.7423, 4.0130)$ =4.0130 mm Available Nozzle Neck Thickness = 0.875 * 4.750 = 4.156 mm --> OK **Nozzle Junction Minimum Design Metal Temperature (MDMT)** Calculations: MDMT of Nozzle-Shell/Head Weld for the Nozzle (Impact tested): Impact Test Temperature provided per Specification -46 °C Governing MDMT of all the sub-joints of this Junction: -46 °C Weld Size Calculations, Description: N3 Intermediate Calc. for nozzle/shell Welds Tmin3.1498 mm #### Results Per UW-16.1: Nozzle Weld 2.2049 = 0.7 * tmin. 7.0700 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 22.625 kgf/cm² The Drop for this Nozzle is: 0.1897 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 216.6897 mm INPUT VALUES, Nozzle Description: N4 From : 20 Pressure for Reinforcement Calculations P 22.500 kgf/cm² Temperature for Internal Pressure Temp 55 °C Shell Material SA-516 70 Shell Allowable Stress at Temperature Sv1406.14 kgf/cm² Shell Allowable Stress At Ambient Sva1406.14 kgf/cm² Inside Diameter of Cylindrical Shell D 600.00 mm Shell Finished (Minimum) Thickness t 6.5000 mm Shell Internal Corrosion Allowance c 1.6000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 60.0800 cm User Entered Minimum Design Metal Temperature -28.89 °C # Type of Element Connected to the Shell: Nozzle Material [Impact Tested] SA-333 6 Material UNS Number K03006 Material Specification/Type Smls. &wld. pipe Allowable Stress at Temperature Sn 1202.25 kgf/cm² Allowable Stress At Ambient Sna1202.25 kgf/cm² Diameter Basis (for treale only) ID Layout Angle 90.00 deg Diameter 1.0000 in. Size and Thickness Basis Nominal Nominal Thickness tn 160 Flange Material [Normalized] SA-333 6 Flange Type Long Weld Neck Corrosion Allowance can 1.6000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 210.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 10.0000 mm Groove weld depth between Nozzle and Vessel Wgnv0.0000 mm ASME Code Weld Type per UW-16 None Class of attached Flange 300 Grade of attached Flange GR 1.1 # **Nozzle Sketch (may not represent actual weld type/configuration)** #### Reinforcement CALCULATION, Description: N4 ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 0.815 in. Actual Thickness
Used in Calculation 0.250 in. Reqdthk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] $$= (P*R)/(Sv*E-0.6*P)$$ per UG-27 (c)(1) =(22.50*301.6000)/(1406*1.00-0.6*22.50) = 4.8728 mm Regdthk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(Sn*E-0.6*P) per UG-27 (c)(1) - =(22.50*11.95)/(1202*1.00-0.6*22.50) - = 0.2262 mm # **UG-45 Minimum Nozzle Neck Thickness Requirement:** [Int. Press.] Wall Thickness for Internal/External pressures ta = 1.8262 mm Wall Thickness per UG16(b), tr16b = 3.1000 mm Wall Thickness, shell/head, internal pressure trb1 = 6.4728 mm Wall Thickness tb1 = max(trb1, tr16b) = 6.4728 mm Wall Thickness tb2 = max(trb2, tr16b) = 3.1000 mm Wall Thickness per table UG-45 tb3 = 4.5464 mm Determine Nozzle Thickness candidate [tb]: $= \min[tb3, \max(tb1,tb2)]$ $= \min[4.546, \max(6.4728, 3.1000)]$ =4.5464 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: $= \max(ta, tb)$ $= \max(1.8262, 4.5464)$ = 4.5464 mm Available Nozzle Neck Thickness = $0.875 * 6.350 = 5.556 \text{ mm} \longrightarrow \text{OK}$ Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of Nozzle-Shell/Head Weld for the Nozzle (Impact tested): Impact Test Temperature provided per Specification -46 °C Governing MDMT of all the sub-joints of this Junction : -46 °C Weld Size Calculations, Description: N4 Intermediate Calc. for nozzle/shell Welds Tmin4.7500 mm #### **Results Per UW-16.1:** Required Thickness Actual Thickness Nozzle Weld 3.3250 = 0.7 * tmin. 7.0700 = 0.7 * Wo mm #### Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 22.625 kgf/cm² The Drop for this Nozzle is: 0.4652 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 216.9652 mm # INPUT VALUES, Nozzle Description: N2 From: 20 Pressure for Reinforcement Calculations P 22.500 kgf/cm² Temperature for Internal Pressure Temp 55 °C Shell Material SA-516 70 Shell Allowable Stress at Temperature Sv1406.14 kgf/cm² Shell Allowable Stress At Ambient Sva1406.14 kgf/cm² Inside Diameter of Cylindrical Shell D 600.00 mm Shell Finished (Minimum) Thickness t 6.5000 mm Shell Internal Corrosion Allowance c 1.6000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 60.0800 cm User Entered Minimum Design Metal Temperature -28.89 °C ## Type of Element Connected to the Shell: Nozzle Material [Impact Tested] SA-333 6 Material UNS Number K03006 Material Specification/Type Smls. &wld. pipe Allowable Stress at Temperature Sn 1202.25 kgf/cm² Allowable Stress At Ambient Sna1202.25 kgf/cm² Diameter Basis (for trealc only) ID Layout Angle 180.00 deg Diameter 8.0000 in. Size and Thickness Basis Nominal Nominal Thickness tn 80 Flange Material SA-333 6 Flange Type Weld Neck Flange Corrosion Allowance can 1.6000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 210.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 10.0000 mm Groove weld depth between Nozzle and Vessel Wgnv6.5000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm Pad Material SA-516 70 Pad Allowable Stress at Temperature Sp1406.14 kgf/cm² Pad Allowable Stress At Ambient Spa 1406.14 kgf/cm² Diameter of Pad along vessel surface Dp320.0000 mm Thickness of Pad te8.0000 mm Weld leg size between Pad and Shell Wp8.0000 mm Groove weld depth between Pad and Nozzle Wgpn8.0000 mm Reinforcing Pad Width 50.4625 mm ASME Code Weld Type per UW-16 None Class of attached Flange 300 Grade of attached Flange GR 1.1 #### **Nozzle Sketch (may not represent actual weld type/configuration)** # Insert/Set-in Nozzle With Pad, no Inside projection Reinforcement CALCULATION, Description: N2 ASME Code, Section VIII, Div. 1, 2015, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 7.625 in. Actual Thickness Used in Calculation 0.500 in. Regdthk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] $$= (P*R)/(Sv*E-0.6*P)$$ per UG-27 (c)(1) $$=(22.50*301.6000)/(1406*1.00-0.6*22.50)$$ =4.8728 mm Reqdthk per UG-37(a)of Nozzle Wall, Trn [Int. Press] $$= (P*R)/(Sn*E-0.6*P)$$ per UG-27 (c)(1) $$=(22.50*98.44)/(1202*1.00-0.6*22.50)$$ = 1.8632 mm #### **UG-45 Minimum Nozzle Neck Thickness Requirement:** [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.4632 mm Wall Thickness per UG16(b), tr16b = 3.1000 mm Wall Thickness, shell/head, internal pressure trb1 = 6.4728 mm Wall Thickness tb1 = max(trb1, tr16b) = 6.4728 mm Wall Thickness tb2 = max(trb2, tr16b) = 3.1000 mm Wall Thickness per table UG-45 tb3 = 8.7600 mm Determine Nozzle Thickness candidate [tb]: $= \min[tb3, \max(tb1,tb2)]$ $= \min[8.760, \max(6.4728, 3.1000)]$ = 6.4728 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: $= \max(ta, tb)$ $= \max(3.4632, 6.4728)$ = 6.4728 mm Available Nozzle Neck Thickness = 0.875 * 12.700 = 11.113 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld (Impact tested): Impact Test Temperature provided per Specification -46 °C MDMT of Nozzle Neck to Pad Weld for the Nozzle (Impact tested): Impact Test Temperature provided per Specification -46 °C MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, Curve: B Govrn. thk, tg = 8.000, c = 1.6000 mm, $E^* = 1.00$ Stress Ratio = tr * $(E^*)/(tg - c) = 0.994$, Temp. Reduction = 0 °C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66, Curve B -29 °C Min Metal Temp. at Required thickness (UCS 66.1) -29 °C MDMT of Shell to Pad Weld at Pad OD for pad, Curve: B Govrn. thk, tg = 6.500, tr = 4.873, c = 1.6000 mm, $E^* = 1.00$ Stress Ratio = tr * (E*)/(tg - c) = 0.994, Temp. Reduction = $0 \,^{\circ}$ C Min Metal Temp. w/o impact per UCS-66, Curve B -29 °C Min Metal Temp. at Required thickness (UCS 66.1) -29 °C # MDMT of Nozzle-Shell/Head Weld for the Nozzle (Impact tested): Impact Test Temperature provided per Specification -46 °C Governing MDMT of the Nozzle : -46 °C Governing MDMT of the Reinforcement Pad : -29 °C Governing MDMT of all the sub-joints of this Junction : -29 °C # Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 12.700 - 1.600 = 11.100 mm Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance =600.000/2+1.600 = 301.600 mm Effective Length of Vessel Wall [LR]: $$= 10 * t$$ $$= 10 * 4.900$$ =49.000 mm Thickness Limit Candidate [LH1]: $$= t + 0.78 * sqrt(Rn * tn)$$ $$=4.900+0.78*$$ sqrt($98.438*11.100$) = 30.683 mm Thickness Limit Candidate [LH2]: $$= Lpr1 + T$$ =210.000+4.900 = 214.900 mm # Thickness Limit Candidate [LH3]: = 8(t + te) = 8(4.900 + 8.000) = 103.200 mm # Effective Nozzle Wall Length Outside the Vessel [LH]: = min[LH1, LH2, LH3] $= \min[30.683, 214.900, 103.200)$ = 30.683 mm # Effective Vessel Thickness [teff]: =t = 4.900 mm ## Determine Parameter [Lamda]: $$= min(10, (Dn + Tn)/(sqrt((Di + teff) * teff)))$$ = min($$10$$, $(196.88 + 11.100)/($ sqrt($(603.20 + 4.900) * 4.900)))$ = 3.810 # Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad): Area Contributed by the Vessel Wall [A1]: $$= t * LR * max(Lamda/4, 1)$$ $$= 4.900 * 49.000 * max(3.810/4, 1)$$ $= 2.401 \text{ cm}^2$ # Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 11.100 * 30.683 $= 3.406 \text{ cm}^2$ Area Contributed by the Outside Fillet Weld [A41]: $= 0.5 * Leg41^{(2)}$ $= 0.5 * 10.000^{(2)}$ $= 0.500 \text{ cm}^2$ Area Contributed by the Reinforcing Pad [A5]: = min(W * te, LR * te) $= \min(50.462 * 8.000, 49.000 * 8.000)$ $= 3.920 \text{ cm}^2$ The total area contributed by A1 through A5 [AT]: $$= A1 + frn(A2 + A3) + A41 + A42 + A43 + frp(A5)$$ $$= 2.401 + 1.000(3.406 + 0.000) + 0.500 + 0.000 + 0.000 + 1.000(3.920)$$ $= 10.227 \text{ cm}^2$ Allowable Local Primary Membrane Stress [Sallow]: $$= 1.5 * S * E$$ $= 2109.2 \text{ kgf/cm}^2$ Determine Force acting on the Nozzle [fN]: $$= P * Rn(LH - t)$$ $$= 22.500 * 98.438 (30.683 - 4.900)$$ = 571.1 kgf Determine Force acting on the Shell [fS]: $$= P * Reff(LR + tn)$$ = 22.500 * 301.600 (49.000 + 11.100) = 4078.4 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 22.500 * 301.600 * 98.438 = 6680.0 kgf Area Resisting Internal Pressure [Ap]: = Rn(LH - t) + Reff(LR + tn + Rnc) = 98.438 (30.683 - 4.900) + 301.600 (49.000 + 11.100 + 98.438) $= 503.5 \text{ cm}^2$ Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /(2 * Ap/AT - Rxs/teff) = 2109.210/(2 * 503.529/10.227 - 301.600/4.900) $= 57.1 \text{ kgf/cm}^2$ Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 1406.140 [4.900/301.600] $= 22.8 \text{ kgf/cm}^2$ Maximum Allowable Working Pressure [Pmax]: = min(Pmax1, Pmax2) $= \min(57.127, 22.845)$ $= 22.845 \text{ kgf/cm}^2$ Average Primary Membrane Stress [SigmaAvg]: = (fN + fS + fY) / AT = (571.056 + 4078.380 + 6679.959)/10.227 $= 1107.812 \text{ kgf/cm}^2$ General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff = 22.500 * 301.600/4.900 $= 1384.9 \text{ kgf/cm}^2$ Maximum Local Primary Membrane Stress [PL]: = max(2 * SigmaAvg - SigmaCirc, SigmaCirc) $= \max(2 * 1107.812 - 1384.898, 1384.898)$ $= 1384.9 \text{ kgf/cm}^2$ **Summary of Nozzle Pressure/Stress Results:** Allowed Local Primary Membrane Stress Sallow 2109.21 kgf/cm² PL 1384.90 kgf/cm² Local Primary Membrane Stress Maximum Allowable Working Pressure Pmax22.85 kgf/cm² Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = (Rnc + tn) / Rnc = (98.438 + 11.100)/98.438 = 1.113 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * (Rn + tn) = pi/2 * (98.438 + 11.100) = 172.061 mm Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * (Rn + tn + W) $$= pi/2 * (98.438 + 11.100 + 50.462)$$ = 251.327 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 7.071, 5.657, 0.000, mm ## Weld Load Value [fwelds]: = min(fy * ky, 1.5 * Sn(A2 + A3), $$pi/4*P*Rn^2*ky^2$$)
= $min(6680*1.11,1.5*1202.2(3.406+0.000),pi/4*22.5*98.44^2*1.11^2)$ = 2120.300 kgf # Discontinuity Force [fws]: $$=$$ fwelds * t * $S/($ t * $S +$ te * $Sp)$ = 2120.3*4.90*1406/(4.900*1406+8.000*1406) = 805.385 kgf # Discontinuity Force [fwp]: = fwelds * te * $$Sp / (t * S + te * Sp)$$ $$=2120.3*8.00*1406/(4.900*1406+8.000*1406)$$ = 1314.915 kgf ## Shear Stress [tau1]: $$= fws / (Ltau * (0.6 * tw1 + 0.49 * L43T))$$ $$= 805.385/(172.061 * (0.6 * 4.900 + 0.49 * 0.000))$$ $= 159.211 \text{ kgf/cm}^2$ Shear Stress [tau2]: $$= \text{fwp} / (\text{Ltau} * (0.6 * \text{tw2} + 0.49 * \text{L41T}))$$ $$= 1314.915/(172.061 * (0.6 * 8.000 + 0.49 * 7.071))$$ $= 92.466 \text{ kgf/cm}^2$ Shear Stress [tau3]: - = fwp / (Ltau * (0.49 * L42T)) - = 1314.915/(251.327 * (0.49 * 5.657)) - $= 188.752 \text{ kgf/cm}^2$ Maximum Shear Stress in the Welds: - $= \max(tau1, tau2, tau3)$ - $= \max(159.211, 92.466, 188.752)$ - = 188.8 must be less than or equal to 1406.1 kgf/cm² Weld Size Calculations, Description: N2 Intermediate Calc. for nozzle/shell Welds Tmin8.0000 mm Intermediate Calc. for pad/shell Welds TminPad4.9000 mm #### Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 5.6000 = 0.7 * tmin. 7.0700 = 0.7 * Wo mm Pad Weld 2.4500 = 0.5*TminPad 5.6560 = 0.7*Wp mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 22.625 kgf/cm² The Drop for this Nozzle is: 20.7124 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 237.2124 mm #### **Nozzle Miscellaneous Data:** | Elevation/Da | istance Layout | | Projectio | n In | istalled In Nozzle | | | |--------------|----------------|-------------|-----------|--------|--------------------|------|----| | | From Datum Ang | gle | Outside | Inside | Component cm | deg. | mm | | | mm | | | | | | | | | | | | | | | | | N3 | 40.000 | 90.00210.00 | 0.00 | shell | 1 | | | | N6 | 85.000 | 90.00210.00 | 0.00 | shell | l | | | | N4 | 55 000 | 90 00210 00 | 0.00 | shell | I | | | | shell | 0.00 | 90.00210.00 | 70.000 | N5 | |-------|------|--------------|---------|----| | shell | 0.00 | 90.00210.00 | 18.000 | N1 | | shell | 0.00 | 90.00210.00 | 100.800 | N7 | | shell | 0.00 | 270.00150.00 | 55.000 | N8 | | shell | 0.00 | 180.00210.00 | 55.000 | N2 | # **Nozzle Calculation Summary:** | Description | MAWP | Ext MAPNC | UG45 [tr] Weld Areas or kgf/cm ² | |-------------|---------|---------------|---| | | kgf/cm² | Path Stresses | 3 | | | | | | | N1 | 22.62 | OK5.02 | OK NoCalc[*] | | N3 | 22.62 | OK4.01 | OK NoCalc[*] | | N4 | 22.62 | OK4.55 | OK NoCalc[*] | | N5 | 22.62 | OK4.55 | OK NoCalc[*] | | N6 | 22.62 | OK4.01 | OK NoCalc[*] | | N7 | 22.62 | OK5.02 | OK NoCalc[*] | | N8 | 22.62 | OK5.02 | OK NoCalc[*] | | N2 | 22.62 | 0.00 OK 6.47 | OK Passed | | | | | 1.1222Tr | 0.00 N2 Min. Shell&Flgs22.62 30 40 Min. - Nozzles 22.62 N2 30.08 Computed Vessel M.A.W.P. 22.62 kgf/cm² # Check the Spatial Relationship between the Nozzles From Node Nozzle Description X Coordinate, Layout Angle, Dia. Limit | 20 | N1 | 230.80090.0 | 92.100 | |----|----|-------------|--------------| | 20 | N3 | 450.80090.0 | 00 31.136 | | 20 | N4 | 600.80090.0 | 00 47.802 | | 20 | N5 | 750.80090.0 | 00 47.802 | | 20 | N6 | 900.80090.0 | 00 31.136 | | 20 | N7 | 1058.800 | 90.00092.100 | | 20 | N8 | 600.800 | 270.00092.100 | |----|----|---------|----------------| | 20 | N2 | 600.800 | 180.000393.750 | Fig no: 3.3.3 Nozzle # 3.3.4 Software calculation for saddle support ASME Horizontal Vessel Analysis: Stresses for the Left Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Horizontal Vessel Stress Calculations : Operating Case # **Input and Calculated Values:** | Vessel Mean Radius | Rm 304.05 mm | |--|----------------------| | Stiffened Vessel Length per 4.15.6 | L = 130.16 cm | | Distance from Saddle to Vessel tangent | a 202.00 mm | | Saddle Width | b 96.00 mm | | Saddle Bearing Angle | theta 120.00 degrees | | Wear Plate Width | b1 160.00 mm | Wear Plate Bearing Angle theta1 132.00 degrees Wear Plate Thickness tr8.0 mm Wear Plate Allowable Stress Sr970.24 kgf/cm² Inside Depth of Head h2 15.16 cm Shell Allowable Stress used in Calculation 1406.14 kgf/cm² Head Allowable Stress used in Calculation 1406.14 kgf/cm² Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Operating Case 156.66 kgf Horizontal Vessel Analysis Results: Actual Allowable Long. Stress at Top of Midspan 696.94 1406.14 kgf/cm² Long. Stress at Bottom of Midspan 699.21 1406.14 kgf/cm² Long. Stress at Top of Saddles 701.29 1406.14 kgf/cm² Long. Stress at Bottom of Saddles 696.29 1406.14 kgf/cm² Tangential Shear in Shell 7.35 1124.91 kgf/cm² Circ. Stress at Horn of Saddle 13.02 1757.68 kgf/cm² Circ. Compressive Stress in Shell 1.56 1406.14 kgf/cm² Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * (Ft/Num of Saddles + Z Force Load) * B / E = 3.00 * (41.0/2 + 0) * 550.0000/526.6301 = 64.2 kgf Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = max(Fl, Friction Load, Sum of X Forces) * B / Ls $= \max(17.37, 0.00, 0) * 550.0000/700.0000$ = 13.6 kgf Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max(Fwl, Fwt, Fsl, Fst) = 92 + Max(14,64,0,0) = 156.7 kgf # Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 163.52 kgf Transverse Shear Load Saddle 20.48 kgf Longitudinal Shear Load Saddle 17.37 kgf # Formulas and Substitutions for Horizontal Vessel Analysis: # The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011 K5 = 0.7603 K6 = 0.0529 K7 = 0.0262 K8 = 0.3405 K9 = 0.2711 K10 = 0.0581 K1* = 0.1923 K6p = 0.0434 K7p = 0.0216 Moment per Equation 4.15.3 [M1]: $= -Q*a \left[1 - (1 - a/L + (R^2 - h^2)/(2a*L))/(1 + (4h^2)/3L)\right]$ $=-157*20.20[1-(1-20.20/130.16+(30.405^2-15.160^2)/$ (2*20.20*130.16))/(1+(4*15.16)/(3*130.16))] = -4.9 kgf-m. Moment per Equation 4.15.4 [M2]: $= Q*L/4(1+2(R^2-h^2)/(L^2))/(1+(4h^2)/(3L))-4a/L$ $= 157*130/4(1+2(30^2-15^2)/(130^2))/(1+(4*15)/(3*130))-4*20/130$ = 16.1 kgf-m. Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: $= P * Rm/(2t) - M2/(pi*Rm^2t)$ $= 22.500 * 304.050/(2*4.900) - 16.1/(pi*304.0^2*4.900)$ $= 696.94 \text{ kgf/cm}^2$ Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t)= 22.500 * 304.050/(2 * 4.900) + 16.1/(pi * 304.0² * 4.900) $= 699.21 \text{ kgf/cm}^2$ Longitudinal Stress at Top of Shell at Support (4.15.10 $= P * Rm/(2t) - M1/(K1*pi*Rm^2t)$ = 22.500*304.050/(2*4.900)--4.9/(0.1066*pi*304.02*4.900 $= 701.29 \text{ kgf/cm}^2$ Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4] $= P * Rm/(2t) + M1/(K1**pi * Rm^2 * t)$ $= 22.500*304.050/(2*4.900)+-4.9/(0.1923*pi*304.0^2*4.900)$ $= 696.29 \text{ kgf/cm}^2$ Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3))= 157 (130.16 - 2 * 20.20)/(130.16 + (4 * 15.16/3))=93.5 kgfShear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / (Rm * t)= 1.1707 * 93.51/(304.0500 * 4.9000) $= 7.35 \text{ kgf/cm}^2$ ``` Decay Length (4.15.22) [x1,x2] := 0.78 * sqrt(Rm * t) = 0.78 * sqrt(304.050 * 4.900) = 30.107 \text{ mm} Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / (t * (b + X1 + X2)) = -0.7603 * 157 * 0.1/(4.900 * (96.00 + 30.11 + 30.11)) = -1.56 \text{ kgf/cm}^2 Effective reinforcing plate width (4.15.1) [B1]: = min(b + 1.56 * sqrt(Rm * t), 2a) = \min(96.00 + 1.56 * sqrt(304.050 * 4.900), 2 * 20.200) = 156.21 \text{ mm} Wear Plate/Shell Stress ratio (4.15.29) [eta]: = \min(Sr/S, 1) = \min(970.237/1406.140, 1) =0.6900 Circumferential Stress at wear plate (4.15.26) [sigma6,r]: = -K5 * Q * k / (B1(t + eta * tr)) = -0.7603 * 157 * 0.1/(156.214 (4.900 + 0.690 * 8.000)) = -0.73 \text{ kgf/cm}^2 Circ. Comp. Stress at Horn of Saddle, L<8Rm (4.15.28) [sigma7,r*]: = -Q/(4(t+eta*tr)b1) - 12*K7*Q*Rm/(L(t+eta*tr)^2) =-157/(4(4.900+0.690*8.000)156.214) 12*0.026*157*304.050/(130.16(4.900+0.690*8.000)^2) = -13.02 \text{ kgf/cm}^2 Free Un-Restrained Thermal Expansion between the Saddles [Exp]: = Alpha * Ls * (Design Temperature - Ambient Temperature) = 0.118E-04 * 700.000 * (55.0 - 21.1) = 0.280 \text{ mm} ``` #### **ASME Horizontal Vessel Analysis: Stresses for the Right Saddle** (per ASME Sec. VIII Div. 2 based on the Zick method.) ## **Input and Calculated Values:** Vessel Mean Radius Rm 304.05 mm Stiffened Vessel Length per 4.15.6 L 130.16 cm Distance from Saddle to Vessel tangent a 202.00 mm Saddle Width b 96.00 mm Saddle Bearing Angle theta 120.00 degrees Wear Plate Width b1 160.00 mm Wear Plate Bearing Angle theta1 132.00 degrees Wear Plate Thickness tr8.0 mm Wear Plate Allowable Stress Sr970.24 kgf/cm² Inside Depth of Head h2 15.16 cm Shell Allowable Stress used in Calculation 1406.14 kgf/cm² Head Allowable Stress used in Calculation 1406.14 kgf/cm² Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Operating Case 178.58 kgf Horizontal Vessel Analysis Results: Actual Allowable Long. Stress at Top of Midspan 696.78 1406.14 kgf/cm² Long. Stress at Bottom of Midspan 699.36 1406.14 kgf/cm² Long. Stress at Top of Saddles 701.75 1406.14 kgf/cm² Long. Stress at Bottom of Saddles 696.04 1406.14 kgf/cm² Tangential Shear in Shell 8.38 1124.91 kgf/cm² Circ. Stress at Horn of Saddle 14.84 1757.68 kgf/cm² Circ. Compressive Stress in Shell 1.77 1406.14 kgf/cm² #### Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: $$= 3.00 * (41.0/2 + 0) * 550.0000/526.6301$$ $$= 64.2 \text{ kgf}$$ Saddle Reaction Force due to Wind Fl or Friction [Fwl]: $$= \max(17.37, 0.00, 0) * 550.0000/700.0000$$ $$= 13.6 \text{ kgf}$$ Load Combination Results for Q + Wind or Seismic [Q]: $$= 114 + Max(14, 64, 0, 0)$$ $$=
178.6 \text{ kgf}$$ # Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 185.44 kgf Transverse Shear Load Saddle 20.48 kgf Longitudinal Shear Load Saddle 17.37 kgf # Formulas and Substitutions for Horizontal Vessel Analysis: The Computed K values from Table 4.15.1: $$K1 = 0.1066$$ $K2 = 1.1707$ $K3 = 0.8799$ $K4 = 0.4011$ $$K5 = 0.7603$$ $K6 = 0.0529$ $K7 = 0.0262$ $K8 = 0.3405$ $$K9 = 0.2711$$ $K10 = 0.0581$ $K1* = 0.1923$ $K6p = 0.0434$ K7p = 0.0216 Moment per Equation 4.15.3 [M1] $$= -Q*a [1 - (1-a/L + (R^2-h^2)/(2a*L))/(1+(4h^2)/3L)]$$ $$=-179*20.20[1-(1-20.20/130.16+(30.405^2-15.160^2)/$$ $$(2*20.20*130.16))/(1+(4*15.16)/(3*130.16))]$$ = -5.6 kgf-m. Moment per Equation 4.15.4 [M2]: $$= Q*L/4(1+2(R^2-h^2)/(L^2))/(1+(4h^2)/(3L))-4a/L$$ $$= 179*130/4(1+2(30^2-15^2)/(130^2))/(1+(4*15)/(3*130))-4*20/130$$ = 18.4 kgf-m. Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: $$= P * Rm/(2t) - M2/(pi*Rm^2t)$$ $$= 22.500 * 304.050/(2*4.900) - 18.4/(pi*304.0^2*4.900)$$ $= 696.78 \text{ kgf/cm}^2$ Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: $$= P * Rm/(2t) + M2/(pi * Rm2 * t)$$ $= 699.36 \text{ kgf/cm}^2$ Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3 $$= P * Rm/(2t) - M1/(K1*pi*Rm^2t)$$ $$= 22.500*304.050/(2*4.900)--5.6/(0.1066*pi*304.02*4.900)$$ $= 701.75 \text{ kgf/cm}^2$ Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4] := P * Rm/(2t) + $$M1/(K1**pi*Rm^2*t)$$ $$= 22.500*304.050/(2*4.900)+-5.6/(0.1923*pi*304.0^2*4.900)$$ $= 696.04 \text{ kgf/cm}^2$ Maximum Shear Force in the Saddle (4.15.5) [T]: $$= Q(L-2a)/(L+(4*h2/3))$$ $$= 179 (130.16 - 2 * 20.20)/(130.16 + (4 * 15.16/3))$$ = 106.6 kgf Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: $$= K2 * T / (Rm * t)$$ $= 8.38 \text{ kgf/cm}^2$ Decay Length (4.15.22) [x1,x2]: $$= 0.78 * sqrt(Rm * t)$$ $$= 0.78 * sqrt(304.050 * 4.900)$$ = 30.107 mm Circumferential Stress in shell, no rings (4.15.23) [sigma6]: $$= -K5 * Q * k / (t * (b + X1 + X2))$$ $$= -0.7603 * 179 * 0.1/(4.900 * (96.00 + 30.11 + 30.11))$$ $= -1.77 \text{ kgf/cm}^2$ Effective reinforcing plate width (4.15.1) [B1]: $$= min(b + 1.56 * sqrt(Rm * t), 2a)$$ $$= min(96.00 + 1.56 * sqrt(304.050 * 4.900), 2 * 20.200)$$ = 156.21 mm Wear Plate/Shell Stress ratio (4.15.29) [eta]: $$= \min(Sr/S, 1) = \min(970.237/1406.140, 1)$$ =0.6900 Circumferential Stress at wear plate (4.15.26) [sigma6,r]: $$= -K5 * Q * k / (B1(t + eta * tr))$$ $$= -0.7603 * 179 * 0.1/(156.214 (4.900 + 0.690 * 8.000))$$ $= -0.83 \text{ kgf/cm}^2$ Circ. Comp. Stress at Horn of Saddle, L<8Rm (4.15.28) [sigma7,r*]: = $$-Q/(4(t+eta*tr)b1) - 12*K7*Q*Rm/(L(t+eta*tr)^2)$$ $$=-179/(4(4.900+0.690*8.000)156.214)$$ $12*0.026*179*304.050/(130.16(4.900+0.690*8.000)^2)$ $= -14.84 \text{ kgf/cm}^2$ Fig no: 3.3.4 Saddle supports # 3.4 Assembly of Components Fig no: 3.4.1 Assembled sulphuric acid tank # 4. Results And Conclusion # 4.1 Design Results | Parameter | Analytical thickness | Software thickness | |-----------|----------------------|--------------------| | Shell | 6.23mm (take 8mm) | 6.45mm (take 8mm) | | Dish end | mm (take 8mm) | 6.39mm (take 8mm) | | Nozzle N1 | 4.74mm | 2.00in | | Nozzle N2 | 2.55mm | 8.00in | | Nozzle N3 | 2.23mm | 0.50in | | Nozzle N4 | 2.08mm | 1.00in | | Nozzle N5 | 2.23mm | 1.00in | | Nozzle N6 | 2.08mm | 0.50in | | Nozzle N7 | 4.74mm | 2.00in | | Nozzle N8 | 2.55mm | 2.00in | | Support | 8mm | 8mm | Table no: 6.1.1 Design results # 4.2 Conclusion - i) Understood components of General Arrangement of sulphuric acid tank and its applications. - ii) Designed the components of industrial water heater vessel by analytical method in reference with A.S.M.E section viii Div. 1. - iii) Validated the design using software PV-Elite version 2017. - iv) Compared of analytical and software calculation. - v) Modelled the vessel in PV-Elite software. # 5. Advantages And Disadvantages # **5.1 Advantages:** - i. An Industrial Vessel is a container designed to hold gases or liquids at a pressure - ii. These vessels can be dangerous and fatal accidents have occurred in the history, so that can be reduced. - iii. Heater vessel design, manufacture, and operation are regulated by engineering authorities backed by legislation. So the design and analysis has to be done according to these legislations. - iv. Human safety ensured. - v. Accuracy of production. # 5.2 Disadvantages: - I. Improper selection of materials leads to lesser Factor of safety. - II. Design becomes complex for consideration of parameters such as pressure, temperature, wind load, seismic loads. - III. Higher Technical knowledge is required. - IV. Software package is costly. - V. Testing methods are too costly. # 5.3 FUTURE SCOPE This project will be broadly expanded to design and analyse various static and rotary equipment's of oil and gas and process industries such as follows: - i. Various kinds of industrial Heat exchangers using TEMA Standard - ii. Various types of storage vessels using ASME and E-tank - iii. Various Rotating Equipment's such as agitator, pumps etc - iv. Design of various piping lines for refineries # References - UG-16 GENERAL DESIGN (Reference ASME SECTION VIII DIV.1 Page no.13) - UG-17 METHODS OF FABRICATION IN COMBINATION (Reference ASME SECTION VIII DIV.1 Page no.14) - GUIDELINE ON LOCATING MATERIALS IN STRESS TABLES, AND IN TABLES OF MECHANICAL AND PHYSICAL PROPERTIES:(Reference ASME SECTION II PART D Page no.2) - (Reference ASME SECTION II PART D Page no.282 MATERIAL 516 GR 70) - (Reference ASME SECTION II PART DMATERIAL 516 GR 70 Page no.283 Line no.25 for Stress value) - HAND BOOK OF ASME boiler and pressure vessel- an international code. Section viii division 1. 2015 edition. - HAND BOOK OF ASME SECTION2 PART D - Strength of materials Text book of thin shells by G.H RYDER. - Design of machine elements by V.B BHANDARI, R.S KHURMI - Design and Analysis of Pressure Vessel, ISSN:2321-1156 International Journal of Innovative Research in Technology & Science(IJIRTS)28 International Journal of Innovative Research in Technology & Science | Volume 2, Number 3. #### Links and urls; - Practiceguideforpressurevesslemanufacturing;https://www.google.co.in/url?sa=t&sourc e=web&rct=j&url=http://www.daboosanat.com/images/pdf/books/0035---Practical-Guide-To-Pressure-Vessel- - Manufacturing.pdf&ved=2ahUKEwiapIbclI7aAhXEPY8KHVJpAx8QFjABegQIAxAB &usg=AOvVaw3GTYDypYIBJPios3lkG0CM - Large scale ammonia storage; https://www.irc.wisc.edu - Ammonia storage; https://www.slideshare.net # **Picture Gallery** Fig no: B Fig no: D Fig no: E Fig no: G