School of Engineering & Technology

School of Pharmacy

KALSEKAR TECHNICAL CAMPUS

NNOVATIVE TEACHING . EXUBERANT LEARNING

Knowledge Resource & Relay Centre (KRRC)

AIKTC/KRRC/SoET/	ACKN/O	IJES/2019-	20/
THE CHAIN COULT	ACINIO	UES/2017-	4U/

Date: 02/08/2022

School: SoET-CBCS

Branch: CC

COMP. ENGG. SE

SEM: <u>IV</u>

To, Exam Controller, AIKTC, New Panvel.

Dear Sir/Madam,

Received with thanks the following Semester/Unit Test-II (Reg./ATKT) question papers from your exam cell:

Sr.	Subject Name	Subject Code	For	mat	No. of
No.	# FAN (252)		SC	HC	Copies
1	Applied Mathematics- IV	CSC401	3		
2	Analysis Of Algorithms	CSC402		35	
3	Comp. Org. And Archi.	CSC403	L	35	
4	Comp. Graphics	CSC404		3	
5	Operating System	CSC405			×
	WAVI MUMI	BAI - INDIA			
			27		

Note: SC - Softcopy, HC - Hardcopy

(Shaheen Ansari) Librarian, AIKTC IR@AIKTC-KRRC

Program: BE Computer Engineering

Curriculum Scheme: Revised 2016

Examination: Second Year Semester IV

Course Code: CSC401 and Course Name: Applied Mathematics IV

Q1.	The Eigen values of $4A^{-1} + 2A + 3I$ where $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ are
Option A:	9,12
Option B:	9,15
Option C:	6,3
Option D:	8,13
Q2.	A test is conducted for H_0 : $\mu=20$ with $\sigma=4$, a sample of size 36 has $\overline{x}=21.4$ then the test statistics is
Option A:	0.35
Option B:	2.1
Option C:	12.9
Option D:	
Q3.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ then the minimal polynomial is
Option A:	$f(x) = x^2 - 1$
Option B:	$f(x) = x^2 + 1$
Option C:	$f(x) = x^2 + x - 1$
Option D:	f(x) = x - 1
A STATE OF THE PARTY OF THE PAR	TAN MILLER AL MON
Q4.	The value of the integral $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x$ is
Option A:	$\frac{5}{6} + \frac{i}{6}$
Option B:	$\frac{1}{6} + \frac{5i}{6}$
	1
Option C:	$\left \frac{1}{6} + \frac{i}{6}\right $
Option D:	$\frac{5}{6} - \frac{i}{6}$

	4
Q5.	The Dual of the LPP $Min z = x_1 + 2x_2$
	$S.t \qquad 3x_1 - 2x_2 \ge 4$
	$x_1 + 7x_2 \ge 2$
	$x_1, x_2 \geq 0$
	11,12 = 0
Option A:	$Max w = y_1 + 2y_2$
	$S.t 4y_1 + 2y_2 \le 2$
	$-2y_1 + 7y_2 \le 3$
	$y_1, y_2 \ge 0$
Option B:	$Min w = 4y_1 + 2y_2$
	$S.t 43y_1 + 2y_2 \ge 2$
-	$-2y_1 + 7y_2 \ge 3$
3	$y_1, y_2 \geq 0$
Option C:	$Min w = y_1 + 2y_2$
	$S.t \qquad 4y_1 + 2y_2 \ge 2$
	$-2y_1 + 7y_2 \ge 3$
	$y_1, y_2 \ge 0$
Option D:	$Max \ w = 4y_1 + 2y_2$ $S \ t \qquad 3y_1 + y_2 \le 1$
	$S.t \qquad 3y_1 + y_2 \le 1$
	$-2y_1 + 7y_2 \le 2$
	$y_1, y_2 \ge 0$
Q6.	The mean and variance of a Binomial variate are 3 and 1.2 then $n=1$
Option A:	3

Option B:	4				ada angang ana angan and ana ana ana ang ana ang ana ana ana ang ang			
Option C:	N N							
Option D:	: 6							
Q7.	A continuous random variable X has the following probability density function $f(x) = k(x + x^2)$, $0 \le x \le 2$ then $k = -1$							
Option A:	3/14							
Option B:	14/3							
Option C:	4/27	The resulting						
Option D:	1/14				-			
Орионът								
Q8.	The function	$f(z) = \frac{1}{(z-1)^2}$	$\frac{1}{(z+2)^3}$ has	icu.				
Option A:	Poles of ord	der 2 at $z = -$	-2 and a pole of c	order 3 at $z =$	= 1			
Option B:	Poles of ord	der 2 at z = 1	and a pole of ord	der 3 at z = 2	2			
Option C:			1 and a pole of o					
Option D:			and a pole of ord					
	-3 -	EL7-Scale		A 1	12			
Q9.	If the basic va	ariable satisfies	the non-negativit	y constraint, th	nen solution is			
Option A:	Degenerate	/ RNV		STREET	20			
Option B:	Feasible				P			
Option C:	Non-Degener	ate						
Option D:	Non-Feasible				20.75			
	3 "		Hill Long					
Q10.	Based on the following data the calculated value of χ^2 is							
	Based on the	following data			IS			
	Based on the	following data	Non-Smokers		IS			
	Based on the Literates				IS			
		Smokers	Non-Smokers 57 68	Total	IS			
	Literates	Smokers 83	Non-Smokers 57	Total	IS			
	Literates	Smokers 83 46	Non-Smokers 57 68	Total 140 114	IS			
Option A:	Literates Illiterates Total	Smokers 83 46	Non-Smokers 57 68	Total 140 114	IS			
Option A: Option B: Option C:	Literates Illiterates Total 2.56	Smokers 83 46	Non-Smokers 57 68	Total 140 114	IS			

Q2(20 MARKS)	Solve any FOUR out of SIX. Each question carries 05 marks
A	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$ and hence find A^{-1}
В	The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6. Test at 1% level of significance whether the boys perform better than the girls.
С	Evaluate $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the circle $ z =3$.
D	Monthly salaries of 1000 workers have a normal distribution with mean 575 and a standard deviation of 75. Find the number of workers having salaries between 500 and 625 per month. Also find the minimum salary of the highest paid 200 workers.
E	Use Kuhn Tucker Method to solve the NLPP
F	Determine all basic feasible solutions to the following problem $ Max\ z=x_1-2x_2+4x_3 $ $S.\ t \qquad x_1+2x_2+3x_3=7 $ $3x_1+4x_2+6x_3=15 $ $x_1,x_2,x_3\geq 0 $
	$3x_1 + 4x_2 + 6x_3 = 15$ $x_1, x_2, x_3 \ge 0$

Q3(20 MARKS)	Solve any FOUR out of SIX. Each question carries 05 marks								
A	$If A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix} \text{ find } A^{50}$								
В	Evaluate $\int_0^{2\pi} \frac{d\theta}{5+3sin\theta}$								
С	A discrete ra	ndom var	riable has t	he probabil	ity density	function giv	en belov		
	x	-2	-1	0	1	2	3		
	P(X=x)	0.2	k	0.1	·2k	0.1	2 <i>k</i>		
	Find k , mea	n and Var	riance		11/1/1				
D	Solve by Simplex Method $Max z = 7x_1 + 5x_2$								
	23		S.t	$x_1 + 2x_2 \le$	6				
	$4x_1 + 3x_2 \le 12$								
	- Ne			$x_1, x_2 \ge 0$		EE			
E	The means of two random samples of size 9 and 7 are 196.42 and 198.82 respectively. The sum of the squares of the deviations from the means are 26.94 and 18.73 respectively. Can the samples be considered to have been drawn from the same population?								
	Evaluate $\int_C \frac{(z)}{z^4+5}$	$(z+4)^2 dz v$	where C is t	he circle z	= 1.				
		NAV	7 MUM	BA1 - 17	AIGN				

Q4(20 MARKS)	Solve any FOUR out of SIX. Each question carries 05 marks						
A	Prove that $A=\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is diagonalizable. Find the diagonal form D and the diagonalizing matrix M.						
В	Find the Laurent's series for $f(z) = \frac{4z+3}{z(z-3)(z+2)}$ valid for $2 < z < 3$.						
С	Fit a Poisson	distribution t	o the follow	ing data			-
	X	0	10	2	3	4	TOTAL
1 5.	f	122	60	15	2	1	200
	AM - 1 - NO			$3x_1 + 4x_2 \ge x_1, x_2 \ge 0$		SNEW	
	$f(x) = \begin{cases} ke^{-t} \\ 0 \end{cases}$	random varia $kx, x > 0, k > 0$ elsewhere	0		bability densi	ty function	
	and 14 per mo	onth respectiventh the belief that	vely. Use	Y ² test to	check whethe	r these freq	,6,7,15,8,5,16 uencies are in nths period. Test