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Stress analysis of reinforced concrete beam.•	

Preliminary idea of the designing a rein-•	
forced concrete beam.

What is balanced reinforced concrete beam?•	

Beams of Composite Materials

In Chapter 6, we had discussed the normal or longitudinal stresses, also known as the bending stresses, 
which are developed due to the bending of a beam made up of a homogeneous material following 

Hooke’s law. However, quite often in practical applications we have to come across beams that are 
made of two or more materials, called composite materials, which are no longer beams of homogeneous 
material. Reinforced concrete beam is an example where the beam section is made up of concrete and steel 
rods. To determine the stresses developed in such beams, we need to modify our foregoing beam theory 
as discussed in the following section.

	 18.1	 Bending Stress in a Composite Beam

For the sake of simplicity, we consider a composite beam made up of two materials A and B and of rect-
angular cross-section with Young’s moduli of elasticity as EA and EB (EB > EA), respectively. We show 
the beam section in Figure 18.1.

Learning Goals

After completing this chapter, you will be able to understand the following:

18
Chapter

A

yo

Material A

Differential 
area = dA

N

Material B

Figure 18.1  Cross-section of composite beam.
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756   • � Chapter 18—Beams of Composite Materials

	 If we identify a differential area dA in material A at a distance of y from the neutral axis (NA) of the 
beam cross-section, then the force in the longitudinal direction acting on that area will be given by

	 d dA
AF

E y
A= -

ρ
	 (18.1)

This is because dFA is equal to sAdA and sA equals to E∈A. Here ∈A = y/r where r is the radius of 
curvature of the neutral surface. In a similar way, the same area element dA in the material B will expe-
rience a force dFB which is given by

	 d dB BF E
y

A= -
ρ

	 (18.2)

However, the same force equation can be written as

d dB
B

A

AF
E

E

E y
A= -

ρ

= -






E

E

E y
AB

A

A d
ρ

= -E
y n A

A
d( )

ρ

or	 d
d

B AF E
y A

= -
′

ρ
	 (18.3)

where

d d d andB

A

B

A

′ = = =A n A
E

E
A n

E

E

Here, n is known as the modular ratio. If EB > EA as assumed earlier, then n is greater than 1. If, how-
ever, EB < EA then n is lower than 1.
	 Clearly Eqs. (18.1) and (18.3) indicate that if we transform the entire beam cross-section to material 
A, then the area of the material B is converted to n times its original area, where, we repeat, n = EB/EA.  
However, while transforming this area, we must keep y constant and hence, cross-sectional dimen-
sion of area of material B is changed parallel to the neutral axis of the section. Also, we must 
remember that the neutral axis (NA) of the section shell passes through the centroid of the ‘transformed’ 
section. Figure 18.2 shows the area transformation process of the beam section shown in Figure 18.1 
earlier.
	 If the above beam is subjected to positive bending moment, then the stress distribution shown 
in Figure 18.3 is developed in the original beam cross-section and the ‘transformed’ beam cross-
section. In Figure 18.3(a), stress distribution in the original beam cross-section is shown, while in 
Figure 18.3(b), stress distribution in the transformed equivalent beam cross-section of material A is 
represented.
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If we want to calculate the magnitude of stresses at points P and Q in materials B and A, respectively, 
we can determine them from the so-called ‘transformed section’ as

	 | | | |σ
ρ

σ
ρP A

P
Q A

Qand= =E
y

E
y

	 (18.4)

However, in reality, magnitude of stress developed at P should be given by

| |σ
ρP true B
P= E

y

Multiplying and dividing by EA, we get

| |σ
ρP true

B

A
A

P=
E

E
E

y

or	 | | | |σ σP true P= n 	 (18.5)

where | |σP  denotes the magnitude of the stress at P in the transformed cross-section. Thus, to get the 
real stress at P (corresponding to the fact that it belongs to material B with modulus of elasticity EB), 
we need to multiply the calculated stress by the modular ratio n = EB/EA, where EA is the modulus of 
elasticity of the material in terms of which the entire area has been transformed.

Material A
dA

h1

h2

N A

Material B
b

N

dA

dA

Material A nb ndA

Centroid of the
transformed area

A

h2

h1

Figure 18.2  Area transformation.

Material A

N NA A

Q

P

Q

P

yQ

Material A

yP

Material B

(a) (b)

Figure 18.3  Stress distribution in beams with composite materials.
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758   • � Chapter 18—Beams of Composite Materials

 E xample 18.1	

Two metal strips are solidly bonded to form a metal bar of the cross-section as shown in Figure 18.4. With 
the given data, calculate the maximum bending moment that can be safely applied to the composite bar 
(refer Table 18.1).

30 mm

6 mm

6 mm

30 mm

Brass

Aluminium

Brass

Figure 18.4  Beam cross-section.

Table 18.1  Material properties

Material E (GPa) Allowable Stress (MPa)

Brass 105 160
Aluminium 70 100

Solution
Let us transform the cross-section of the composite beam to the cross-section of aluminium beam as 
shown in Figure 18.5.

N

6 mm

6 mm

30 mm
M

P

21 mm

30 mm
Q

sP

sQ

A

105
30

70

 
= 45mm 

 

Figure 18.5  Transformed equivalent aluminium section.

Here, our modular ratio n = EB/EA = 105/70 = 1.5.
Therefore, width of brass section = 30(1.5) mm = 45 mm.
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The section, as shown, is symmetric and the neutral axis passes half-way through it. Also, we identify 
two points P and Q belonging to the section representing farthest points in aluminium and brass 
sections, respectively.
The centroidal area moment of inertia is given by

I = + +













=1

12
30 2

1

12
45 6 45 6 18 2440804 3 2( ) ( )( ) ( )( )( )  mm44

Now, maximum stresses have been specified in the given data. We can find the transformed stress for 
the brass as 160/1.5 MPa [from Eq. (18.5)] = 106.67 MPa. Thus,

σ σP Q1  MPa and 1 6 67 MPa≤ ≤00 0 .

It is known that due to bending moment M applied to the section, a linear stress distribution results 
as shown in the left half of the figure. Therefore,

σ
σ

Q

P

Q

P

= = =
y

y

21

15
1 4.

But
σ
σ

Q

P allowable

= = <106 67

100
1 07 1 4

.
. .

Clearly, we conclude from the above expression that we cannot consider σ σP P allowable
=  as sQ will be 

more than the specified limit. We set

s s sQ Q allowable P MPa   MPa= = ⇒ = =106 67
106 67

1 4
76 2.

.

.
.

which is less than σP allowable
 MPa.= 100  Thus, the safe maximum bending moment M to the  

section shall correspond to stress of 106.67 MPa at Q. Therefore,

        sQ   Nm 1.24 kNm= ⇒ = ⇒ = =MC

I

M
M106 67

21

244080
1239810 17.

( )( )
. � [Answer]

 E xample 18.2	

A composite beam of aluminium strip (EAl = 75 GPa) and a copper strip (ECu = 105 GPa) are bonded 
together as shown in Figure 18.6. If a bending moment M = 35 N m is applied about a horizontal axis, 
calculate the maximum stresses developed in aluminium and copper strips.

24 mm

9 mm

3 mm

M
N A

Aluminium

Copper

Figure 18.6  Beam section.
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Solution
Let us transform the section into an equivalent aluminium section. The modular ratio is

n
E

E
= = =Cu

Al

105

75
1 4.

so the new width of the copper section = (1.4)(24) mm = 33.6 mm.

Let us represent the transformed section in Figure 18.7:

24 mm

33.6 mm

M
N A

sP

sQ

9 mm

3 mm

P

Centroid of the
transformed section

Q
y−

+

Figure 18.7  Transformed section.

Now we place the neutral axis (NA) of the section which shall pass through the centroid of the trans-
formed equivalent section. Therefore, centroidal height by composite area method is

y = +
+

=( . )( )( . ) ( )( )( . )

( . )( ) ( )( )
.

33 6 3 1 5 24 9 7 5

33 6 3 24 9
5 59 mm

and centroidal area moment of inertia is

I = + + + +1

12
33 6 3 33 6 3 5 59 5

1

12
24 9 24 9 7 53 2 3( . )( ) ( . )( )( . ) ( )( ) ( )( )( . --

=

5 59

4007 78

2

4

. )

.  mm

In the figure, we show points P and Q belonging to the aluminium and copper sections, respectively, 
which are farthest from the neutral axis (NA) of the section. So we can calculate the magnitude of the 
maximum stresses at P and Q as

| |
( )( . )

.
.maxσ σP Al mm

 MPa= = - =35 10 12 5 59

4007 78
55 98

3

2

N

and	 | |
( )( . )

.
. .maxσ σQ Cu mm

 MPa= = × =35 10 5 59

4007 78
1 4 68 34

3

2

N
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Assuming a positive bending moment applied to the section, we conclude that stress in aluminium 
will be compressive; and that in the copper strip it will be tensile in nature. Thus, maximum stress 
in the aluminium strip is 55.98 MPa (compressive) and maximum stress in the copper strip is 68.34 
MPa (tensile)� [Answer]

 E xample 18.3	

Let us consider a composite beam of two materials (1) and (2) having elastic moduli E1 and E2 with  
E2 < E1 as shown in Figure 18.8. The beam has a circular cross-section of diameter d. Calculate the posi-
tion of the centroid of the transformed section which is equivalent to material (1).

d

1

2

Figure 18.8  Beam section.

Solution
From the given condition, the transformed section is equivalent to material (1) and thus, material (2) 
will become semi-elliptic as shown in Figure 18.9:

nd

y

d

O
x

d /2

d/2

2d/3π

2d/3π

Figure 18.9  Transformed section.

Clearly, the width of semicircle of material (2) is

Width = =
E

E
d nd2

1
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where n < 1. Now the location of the centroid of the semi-elliptical section, with semi-major axis  
a = d/2 and semi-minor axis b = nd/2, is determined as follows:

2x
dy

y

O
2b = nd

y

a = d/2

x2

b2

y2

a2
+ = 1

x

Figure 18.10  Centroid of semi-ellipse.

From Figure 18.10, we get

y
y A

A

y x y

ab d nd
y

b

a
a y

a

a d

= = = -∫
∫

∫
∫

= d

d

d
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2
2 2

2

2

2

2 2
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/ ( / ) ( / )
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π π
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a

= -∫
16

2
0

2 2

π
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= - - - - = -∫
8

22
2 2

0

2 2 2 2

πd
a y a y a y y y

a

d( ) [as d d( ) ]

	 = - -  =8 2

3

16

32
2 2 3 2

0 2
3

π πd
a y

d
a

a
( ) /

	

or	 y
d

d d= =16

3 8

2

32

3

π π

The locations of the centroid as measured from the x-axis for the semicircular area and semi-elliptical 
area are shown in Figure 18.9. Now, applying composite area theorem to Figure 18.10, to determine 
the centroid of the entire transformed area, we get

y

d d n d d

d n d

d=











 +







-





+
=

π
π

π
π

π π

2 2

2 2

8
2
3 8

2
3

8 8

2

33

1

1π
( )

( )

-
+

n

n

Thus, the centroid is at a distance of ( / ) [( )/( )]2 3 1 1d n nπ - +  above from the horizontal diameter.

� [Answer]
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Note:XX  For the transformed section in the above example, we can also determine the centroidal 
area moment of inertia. It is first determined for the semi-ellipse about the x-axis as

I y A y x y
b
a

y a y yxx
A

a a

= = = 



 -∫∫ ∫ ∫2 2

0

2

0

2 22
2

d d d

Putting y = a sinq, we get

I naxx = ∫2 4 2

0

2
2sin cos

/π

θ θ θd

or	 I
na na n a n a

xx =






= - = =∫ ∫
4

2

0

2 4

0

2 4

2
2

4
1 4

8
sin ( cos )

/ /π π

θ θ θ θ π π
d d

44

128

Now by parallel axis theorem, we get

I I Ay
n d n d d

xx xx= - = -












-2
4 2 2

128 8

2

3

π π
π

= - = -




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π
π

π
π

4 4
4

128 18 128

1
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Similarly, for the semicircular portion:

I
d

I
d d d

dxx xx= = - 



 = -



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4

128 128 8

2

3 128

1

18
and

The centroidal area moment of inertia for the whole section is

I nd
n d d n

n

d

d
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
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+
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
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I n d
d n

nxx whole
= + -



 +

+
( )

( )
1
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1
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2

9 1
4
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The above expression will be required to calculate stresses in such sections.
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 E xample 18.4	

A rectangular beam is made of a material which has modulus of elasticity Et in tension and Ec in compression 
(e.g., plastics are examples of these materials which have unequal moduli of elasticity). Writing the flexure 
equation as

1

ρ
= M

E Ieq

where I bh= 3/12 (b is the width and h is the depth of the section). Prove that the equivalent modulus of 
elasticity Eeq is given by

E
E E

E E
eq

t c

t c

=
+( )

4
2

Solution
Let us assume that the neutral axis (NA) of the section divides the cross-section shown in Figure 18.11:

A A

b

M
N N

y
1

y
2

h y

y

C1

C2

F

F

Compression zone
(Ec)

Tension zone
(E t)

Figure 18.11  Beam section.

Let us assume that NA divides the section in the ratio y1:y2. Therefore, the stresses at points at a 
distance y above and below the NA are:

s
r

s
rcomp c tensile tand= =E

y
E

y

where r is the radius of curvature of the neutral surface. If we build up an area dA surrounding these 
points, we get the resultant compressive and tensile forces, which are equal in magnitude.

F A A
y y

= =∫ ∫σ σcomp tensile d  d
0 0

1 2

or	
E yb y E yb y

E y E y
y y

c t
c t

d d
 

r r
0 0

1
2

2
2

1 2

∫ ∫= ⇒ =

Therefore,

	
y

y

E

E
y

E

E E
h y

E

E E
h1

2
1 2= ⇒ =

+
=

+
t

c

t

t c

c

t c

 and 	 (1)
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Now, taking moments of the forces about the NA, we get

M E
y

b y E
y

b y
y y

= +∫ ∫c td d
0

2

0

21 2

r r

	 = +b
E y E y

3 1
3

2
3

r
( )c t

Putting y1 and y2 from Eq. (1), we get

M
bh

E
E

E E
E E

E

E E
E

E E
=

+
+

+











+( )
3

23

1

r c
t

t c
t t

c

t c
c

t c

or           M
bh E E

E E

bh E E

E E
=

+( )
=





 +( )

3

2

3

23 12

1 4

r r
t c

t c

t c

t c

	 =
IEeq

ρ

where I bh= 3 12/ . Rearranging, we get

1

ρ
= M

E Ieq

where

	 E
E E

E E
eq

t c

t c

=
+( )

4
2 � [Hence proved]

	 18.2	R einforced Concrete Beam

We have already mentioned that reinforced concrete beam is an example of a beam comprising two 
different materials. It has great practical applications in the field of structural engineering1. Though 
the complete discussion on such beams is out of the scope of this book; however, what follows is an 
elementary beam model for the purpose of an elementary introduction to such important structures. 
Before we progress further, we make some important assumptions:

	 1.	 Concrete is a substance which is weak in tension and strong in compression. Hence, the entire 
compressive load on the beam section is borne by the concrete, while the steel rod takes up the 
entire tensile force acting on the beam.

1An interested reader can go through any standard textbook on the theory of reinforced concrete structures; refer to 
Reference (1) in the Bibliography section of the book.
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	 2.	 Concrete follows Hooke’s law approximately2 (although it is not quite correct).
	 3.	 There is enough cohesive force between the concrete and the steel rods.

Essentially, a reinforced concrete beam is made up of concrete and steel rods that are inserted into it 
from its bottom since the bottom portion is subjected to tensile force as shown in Figure 18.12.
	 The steel rods are covered by a distance of 40–50 mm to protect them from being exposed to any 
possible fire hazard. Section depth must be assumed to be h. From the foregoing assumption, it is cus-
tomary to ignore the concrete portion below NA as it does not carry any tensile force, which is devel-
oped in the beam section due to the application of positive bending moment M as shown.
	 We now efficiently transform the section into an equivalent concrete section, wherein the total steel 
rod area, A N dsteel = × ( / ),p 2 4  (N and d being the number and diameter of the steel rod, respectively) is 
transformed into area = nAsteel. Since Young’s modulus of steel (Esteel = 200 GPa) is more than that of the 
concrete (Econc = 25 GPa), steel area is magnified by n = Esteel/Econc 8 times as shown Figure 18.12(b).
	 It is an important task to position the NA in the section defined by the parameter l (0 < l <1) as 
can be seen from Figure 18.12(b) itself. Since the compressive force developed in the concrete section is 
equal to the total tensile force developed in the transformed steel section, we get

F
E yb y E y

A
E

h
E

E

h h

= = = -∫ ∫
-

⋅conc conc conc steel

co

d
 d

ρ ρ ρ
λ

λ λ

0 0

1

1
( )

( )
nnc

S







A

or	
E b

h
E E

E
h Aconc conc steel

conc
S 

2
12 2

ρ
λ

ρ
λ⋅ =







-( )
	

AN
M

Steel rods, area (total) = Asteel

Concrete

b

h M
N A

(1−l)

lhF

b

40−50 mm

Area =

F

Esteel

Econc
Asteel

(a) (b)

Figure 18.12  (a) Reinforced concrete beam section, (b) equivalent concrete section.

2Refer to Reference (12) in the Bibliography section of the book.
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bh

n A
2

12



 = -λ λ( ) steel 	 (18.6)

where n = Esteel/Econc, which is the modular ratio. The above equation can be solved for l to obtain the 
position of NA. To determine the second area moment of inertia, we write

	 I b h h nA= + - ⋅1

3
13 2 2( ) ( )λ λ steel 	 (18.7)

Clearly, stresses in the concrete and steel rods due to M can be determined as

and	
σ λ

conc = M h

I

( )

σ λ
steel = -

n
M h

I

( )1
	 (18.8)

For a given bending moment M, the stresses calculated as per the above equations must be less than 
or equal to the allowable stresses in the concrete and steel rods. Conversely, if stresses are specified, the 
moment can be calculated using the above equations; and the maximum bending moment that can be 
applied to the reinforced concrete beam is given by

	 M
I

h

I

n hmax ,
( )

=
-







⋅
Min  conc steelσ

σ
σ

λ1
	 (18.9)

  Example 18.5	

For the reinforced concrete beam shown in Figure 18.13, find the maximum bending moment M that can 
safely be applied to the section. Assume the modular ratio, n to be 15 for the grade of concrete used, the 
allowable stress of steel, ssteel = 125 MPa and that of concrete, sconc = 4.5 MPa.

A

250 mm

150 mm

N

M

Asteel = 450 mm2

Figure 18.13  Reinforced beam section of Example 18.5.
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Solution
The neutral axis (NA) position locator, l can be found from the Eq. (18.6):

bh
n A

n A

bh2
1

2
12 2



 = - ⇒ = 





-l l l lsteel
steel ( ) ( )

Putting the given values in the above equation, we get

λ λ λ2 2 15 450

150 250
1 0 36 1= × × - = -

( )( )
( ) . ( )

Solving, we get

λ = - ± + =0 36 0 36 4 0 36

2
0 446

2. . ( . )
.

(ignoring the negative impossibble root)

From Eq. (18.7),

I b h h n A= + -1

3
13 2 2( ) ( )λ λ  S

= × + -1

3
150 0 446 250 1 0 446 250 15 4503 2 2( )( . ) ( . ) ( ) ( )( )

or	 I = ×198 79 106 4.  mm

Now from Eq. (18.9), we get

M
I

h

I

n hmax
,

,
( )

=
-







Min
 conc steelσ

λ
σ

λ1

= ×
×

×
- ×

⋅ ⋅
Min  

4 5 198 19 10

0 446 250

125 198 19 10

15 1 0 446 2

9 9. ( )

.
,

( )

( . ) 550







	

=
= =

Min  N mm   N mm

 N mm  kN m

( . , . )

. .

8022914 8 11960890 5

8022914 8 8 02

Thus, the safe moment that can be applied to the section is Mmax = 8.05 kN m.� [Answer]
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 E xample 18.6	

The reinforced concrete beam shown in Figure 18.14 is subjected to the bending moment M = +175 kN m. 
If Esteel = 200 GPa and Econc = 25 GPa, calculate the maximum stresses developed in the steel and  
concrete rods.

A
450 mm

250 mm

N
M

50 mm

22 mm diameter steel
rod (4 numbers)

Figure 18.14  Reinforced concrete beam section.

Solution
For the given problems, Asteel  mm  mm= × =4 4 22 1520 52 2 2( / )( ) .π  and the modular ratio, n E E= = =steel conc/ / .200 25 8 0 

n E E= = =steel conc/ / .200 25 8 0 . Clearly, the neutral axis (NA) locator l in the equivalent concrete section is 
given by the Eq. (18.6) as

λ λ λ λ2 2
1

2 8 1520 5

250 400
1 0 243 1= 





- = × ×
×

- = -
nA

bh
steel ( )

.
( ) . ( )

(note that h = 450 - 50 = 400 mm). Therefore,

λ = - + +



 =1

2
0 243 0 243 4 0 24 0 3862. . ( . ) .

Now, from Eq. (18.7)

I b b h nA= + -1

3
13 2 2( ) ( ) ( )l l steel

= × + - × × ×1

3
250 0 386 400 1 0 386 400 8 1520 53 2 2( )( . ) ( . ) ( . )

or                mmI = ×1 0405 109 4.

By using stress equations from Eq. (18.8), we get

σ λ
conc = M h

I

( )
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or                    N/mm  MPaconcσ = × =175 10 0 386 400

1 0405 10
25 97

6

9
2( )( . )

. ( )
.

and	 σ λ
steel  N/mm= - = -

n
M h

I
( )

.
( )( . )( )

. ( )

1
8 0

175 10 1 0 386 400

1 0405 10

6

9
22

or	 σ steel  MPa= 330 5.

Thus, the maximum stresses developed in the concrete is 26.0 MPa (compressive) and 330.5 MPa 
(tensile).� [Answer]

Note:XX  We observe from the stress equations in Eq. (18.8) that the ratio of the maximum stress in 
the steel to that in concrete is

r n n= = - = -





σ
σ

λ
λ λ

steel

conc

1 1
1

and from Eq. (18.6), we note that:

l = + -



 =1

2
4

22k k k k
nA

bh
; steel

1 2

4

1

2
4

2

2

λ
=

+ -
= + +



k k k k

k k k

or      
1

1
4

2

1

2
1

4

2

1

2

1

2
4

2 2
2

λ
λ-



 = + + - = + - = + -



 =k k

k

k k

k k
k k k

k

So the maximum stress ratio is

r
n

k
= =

σ
σ

λsteel

conc

Sometimes, beams are designed in such a way that the maximum stresses in the concrete and 
steel rods are equal to their specified allowable values. These beams are called balanced reinforced 
concrete beams. In order to design a reinforced concrete beam as a balanced one, we need to posi-
tion the neutral axis (NA) locator, l. If the specified stresses are (sconc )allowable and (ssteel)allowable for 
concrete and steel, respectively, then l can be found as:

n
1

1
λ

σ
σ

-



 =

( )

( )
steel allowable

conc allowable

or                 steel allowable

conc allowable

steel allowa1
1

1
1

λ
σ
σ

σ
= + = +

( )

( )

( )

n
bble

conc allowable

conc

steel( )σ
⋅ E

E
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λ σ

σ

=
+ ⋅

1

1
( )

( )
steel allowable

concrete allowable

concrete

steel

E
E

	 (18.10)

The above expression locates the NA in balanced beam.

  Example 18.7	

A reinforced concrete beam is designed to carry a bending moment, M = 10.4 kN. The width b and depth 
h of the section are related as h = 1.5 b. Assume ssteel = 125 MPa, sconc = 4.0 MPa, Esteel = 210 GPa and 
Econc = 14 GPa. Design the beam.

Solution
We first determine the locator of NA using the specified stress ratios from Eq. (18.10) as:

	 λ σ
σ

=
+

=
+⋅

1

1

1

1
125
4

( )

( )
steel allowable

conc allowable

conc

steel

E
E ..

.

0
14
210

0 324
⋅

= 	 (1)

AN

M M

N

Steel rods total area = A steel

b

h

40–50 mm

A

n Asteel

(1−l)h

lh

2lh /3

F = Asteel(ssteel)allowable

F = 1
2

(sconc)allowable 
(lh)(b)

(sconc)allowable

(ssteel)allowable
n

Figure 18.15  Concrete beam.

Now from the equivalent diagram shown in Figure 18.15 using the stress distribution, we get

1

2
( ) ( )σ λ σconc allowable steel steel allowable bh A=

	
bh

Asteel

= =2 2
125

0 324 4

( )

( ) ( . )(

σ
λ σ

steel allowable

conc allowable .. )
.

0
192 9= 	 (2)

Again from the stress distribution of the equivalent concrete section, by equating the internal moment 
with the applied bending moment, we get:
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or                          

F
h

h h M

Fh M

2

3

1
2

3

λ λ

λ

+ -



 =

-



 = 

But F A= steel steel allowable( )σ . So, the above equation becomes:

A h Msteel steel allowable1
2

3
-



 =λ σ( )

Putting l from Eq. (1), we get

( )( )
( )

. ( )
.

A h
M

steel

steel allowable

=
-





=
- ×

1
2
3

10 4 10

1
2 0 3

6

λ σ 224
3

125



 ( )

	 ( )( ) .A hsteel = 93273 54 2mm 	 (3)

Now from Eqs. (2) and (3), we get

bh2 = (192.9)(93273.54)

as it is known that h = 1.5b or b = h/1.5, we get

	 h h3 1 5 192 9 93273 54 299 96 300= ⇒ =( . )( . )( . ) .  mm  mm �

Thus, section width, b = 300/1.5 = 200 mm and the steel area is

                  Asteel = 93273.54/h = 93273.54/300 = 310.9 mm2 �

Using 10 mm steel rods, we have number of steel rods = N = 310.9/[(p/4) (10)2] = 3.96 ≈ 4. Thus we 
design the beam as shown in Figure 18.16.

200 mm

300 mm

50 mm

f10 rods, 4 numbers

Figure 18.16  Designed beam cross-section.
� [Answer]
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	 	 Summary

In this chapter, we have elaborated our earlier 
knowledge of stress equation of beam, which was 
developed for a homogenous beam material, to the 
cases where different materials are used to form 
composite beams. To this end, we have introduced 
the concept of equivalent section and successfully 
applied stress equation for composite beams.

	 We have also given a careful attention to a 
special case of composite beam of practical impor-
tance, known as reinforced concrete beams.
	 Some design aspects for such beams are also 
discussed in order to introduce the reader to 
a specialised topic on the theory of concrete 
structures.

	 	 Key Terms

Normal stress

Longitudinal stress

Bending stress

Composite area method

Homogeneous material

Neutral axis

Transformed section

Modular ratio

Reinforced concrete beam

B�alanced reinforced concrete 
beam

	 	R eview Questions

	 1.	 What do you mean by beams of composite 
materials?

	 2.	 Explain the transformed section of a com-
posite beam.

	 3.	 What do you mean by reinforced concrete 
beam?

	 4.	 What are the assumptions of stress analysis of 
a reinforced concrete beam?

	 5.	 What do you understand by balanced rein-
forced concrete beam?

	 	N umerical Problems

	 1.	 A simply supported beam with 3 m span 
carries a concentrated load P = 10 acting at 
its midpoint. The beam is made of wood 
and steel and has cross-section as shown in 
Figure 18.17. Assuming modular ratio Ewood/
Esteel = 0.05, calculate the stresses developed 
in steel and wood. 

Figure 18.17  Problem 1.

150 mm

10 mm

100 mm

Steel

Wood
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	 2.	 A composite beam has a circular cross- 
section as shown in Figure 18.18. If Ebrass = 
103 GPa and EAl = 70 GPa and moment  
M = 904 N m is applied to the section, calcu-
late the maximum stresses in brass and 
aluminium.

Brass

Aluminium

r = 20 mm

Figure 18.18  Problem 2.

		  [Hint: Use the results of Example 18.3.]

	 3.	 For the reinforced concrete beam shown in 
Figure 18.19, the bending moment applied 
is M = +203 kN  m. Calculate the stresses in 
concrete and steel. Assume Econc = 25 GPa, 
Esteel = 200 GPa.

62.5 mm

125 mm

Steel rods (25 mm diameter)

600 mm

300 mm

750 mm

Figure 18.19  Problem 3.

	 4.	 For the concrete shown in Figure 18.20, 
Econc = 16.67 GPa and Esteel = 200 GPa.  
Find Mmax if (sconc)allowable = 12 MPa and 
(ssteel)allowable = 110 MPa.

300 mm

360 mm

Steel rods
(25 mm
diameter)

Figure 18.20  Problem 4.

	 	A nswers

Numerical Problems

	 1.	 ssteel = 77.5 MPa (tensile); swood = 12.4 MPa (compressive)

	 2.	 sbrass = 155 MPa (compressive); ssteel = 123 MPa (tensile)

	 3.	 ssteel = 200 MPa (tensile), sconc = 8.0 MPa (compressive)

	 4.	 Mmax = 50 kN m
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