
What is a statically determinate beam?•	

Calculation of the degree of statical indeter-•	
minacy of such beams.

What is a continuous beam?•	

Complete analysis of a continuous beam.•	

Approach towards taking up more advanced •	
studies in structural mechanics.

Statically Indeterminate 
Beams – Continuous Beams

As we already know that for any structure if statical equations are not sufficient to determine the  
 external support reactions for given external loading, it is called statically indeterminate. Additional 

equations defining the deformation characteristics of such members are required in order to find 
the external reactions. For example, for the two-dimensional bending problems when we reduce 
our problem of bending to plane-bending situations, only three independent equations of equilibrium 
( , , ,∑ = ∑ = ∑ =F F Mx y z0 0 0and  if bending occurs in x-y plane) are available. As beams mostly carry 
transverse loading, say in y-direction, the first equilibrium equation, that is, ∑ =Fx 0, becomes trivial 
and as such, we have only two independent equations of equilibrium (i.e., ∑ = ∑ =F My z0 0and ). 
Clearly we can only solve two unknown reactions, and the beam configurations shown in Figure 19.1 
are called statically determinate beams, as equations of the equilibrium are sufficient to determine their 
support reactions completely.

Learning Goals

After completing this chapter, you will be able to understand the following:
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Figure 19.1  Statically determinate beams.
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	 On the other hand, if we increase the number of supports for the above beams, they reduce to statically 
indeterminate ones as shown in the Figure 19.2.
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Figure 19.2  Statically indeterminate beams.

	 In each of the above beam configurations, we can define the term called degree of indeterminacy as the 
number of unknown support reactions are less than the number of equilibrium equations (in this case, 2). 
Hence for cases shown in Figures 19.2(a)–(c), the degree of indeterminacy is 2, 1 and 1, respectively.  
We have already shown in Chapter 10, how to deal with statically indeterminate beams with energy 
approach. Here, we present another method. Whenever we have a number of roller supports and 
one hinged support for a beam, we call such beams as continuous beams. Accordingly, beams shown 
in Figure 19.2 can also be called continuous beams. In order to solve for the support reactions of 
continuous beams, we can follow the method as outlined in the next section.

	 19.1	A nalysis of Continuous Beams

The solution methodology for such beams is based on the principle of superposition which is always 
true for a linear structure. As long as our beam materials follow Hooke’s law and the associated defor-
mations are small enough, we can expect linear behaviour and principle of superposition can be well-
justified.
	 The basic concept of the analysis of the continuous beams relies on the second area-moment theorem 
which we have already discussed in Chapter 7; but for the sake of convenience, we reiterate it  as exem-
plified below:

Second Area-Moment Theorem
The tangential deviation (i.e., distance of a point on the elastic curve from the tangent drawn to the 
elastic curve at another point) of point A with respect to the tangent drawn at B is tA/B (where both 
points A and B are on the elastic curve) is equal to the first area moment of M/EI vs. x (distance mea-
sured along the beam) between points A and B about a transverse axis drawn through point A.
	 If A is vertically above the tangent drawn at B, then tA/B is considered positive, otherwise it will be 
negative. Figures 19.3(a) and (b) explain the theorem for two cases (a) and (b) of beam loading shown 
therein.
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Figure 19.3  Second area-moment theorem.
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	 19.2	T hree-Moment Equation

Let us now consider the following continuous beam shown in Figure 19.4(a) where at least one support 
is pinned or hinged and the remaining ones can be considered as roller supports.
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Figure 19.4  Continuous beam.

	 The continuous beam is segmented into several simply supported beams as shown in Figures 
19.4(b)–(d), where the unknown bending moments at terminal points are shown. It is amply clear that 
in order to analyse such continuous beams, we need to determine the support reactions completely and to this 
end, we must know these bending moments.
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778   • � Chapter 19—Statically I ndeterminate Beams –  Continuous Beams

	 If, for example, we consider the beam segments AB and BC and denote them as nth and (n + 1)th 
member of a long continuous beam and also denote the terminal ends A, B and C as (n − 1), n and 
(n + 1) points, then we note that the relationship of the angles qB at the nth and (n + 1)th member 
from Figures 19.4(b) and (d) is

θ θB th member B th membern n
= − +( )1

or	 θ θB th member B th membern n
+ =+( )1

0 	 (19.1)

The above is the key equation for analysis of a continuous beam. The equation stems from the basic 
material continuity of the beam segments. Now, qB (i.e., slope of the tangent drawn to the elastic curve 
at point B) can be determined from Figure 19.5.
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Figure 19.5  M/EI diagrams of beam segments.

	 As shown in the figure, we consider the M/EI diagrams for the nth and (n + 1)th beam members 
where the moment area for the external load acting on these segments is shown hatched. While in the 
figures, the end-point moment diagrams are also shown. To represent the most general case, we con-
sider the flexural rigidity, EI, to be different for these two segments. From Figure 19.5(a), we note that 
for the nth member, the first moment of M/EI vs. x area with respect to point A is

tanq qB th member B th member
A/B

n n
n n

t

L L
≅ = = ×1
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Similarly, from Figure 19.5(b), we note for the (n + 1)th member:

tan
( ) ( )
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L+ +
+

≅ =
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1
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From Eqs. (19.1)–(19.3), we get:
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The above equation, sometimes called three-moment equation, is repeatedly used for each segment of 
a continuous beam. We thus get a set of simultaneous equations of the unknown bending moments. The 
above equation is due to Clapeyron1. The moments in the equation, in turn, can be used to determine 
the support reactions completely and further analysis can easily be done. Equation(19.4) can be simpli-
fied to a convenient form if we assume the beam to possess the same flexural rigidity for all segments.  
If ( ) ( )EI EIn n= +1  for all n, then, the above equation reduces to:

	 ( ) ( )M L L L M M L
A x

L

A x

Ln n n n n n n
n n

n

n n

n
− + + +

+ +

+
+ + + = − +





1 1 1 1

1 1

1

2 6 	 (19.5)

1B.P.E. Clapeyron (1799–1864), a French engineer, developed three-moment equation in connection with the design 
of bridges.
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Sometimes, the beam segments possess equal lengths also, that is, Ln = Ln +1 for all n, then, Eq. (19.5) 
reduces to more convenient form:

	 M M M
L

A x A xn n n n n n n− + + ++ + = − +1 1 2 1 14
6

( ) 	 (19.6)

where it is assumed that all segments have equal length, L and possess identical flexural rigidity, EI.
	 In all Eqs. (19.4)–(19.6), we must remember that An and An +1 represent the area under the bending 
moment diagrams due to the external loadings acting only on those members.
	 Having determined the bending moments, we can easily solve for support reactions. For example, 
reaction at B (point ‘n’) in Figure 19.5 can be found as

	 R R R
n nB th member th member

= + +n n ( )1
	 (19.7)

Let us now illustrate the use of the three-moment equations with the help of the following examples.

 E xample 19.1	

A continuous beam is shown with a single concentrated load in Figure 19.6. Solve the beam reactions and 
draw the shear force and bending moment diagrams to identify the maximum bending moment. Assume 
EI is constant.
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P L/3

D

L L L

Figure 19.6  Example 19.1.

Solution

We draw the free-body diagram of the beam segments AB, BC and CD as shown in Figure 19.7:
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Figure 19.7  Moment diagrams of beam segments.
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	 We note in the above segments, there are no external loadings on segments 2 and 3. In segment 2, 
there is a concentrated load P and the corresponding bending moment diagram is shown in Figure 
19.7(b). The centroidal distance xC  of the bending moment diagram is marked also from point C. 
(Since EI is constant for all the beam segments, we just show the moment diagram instead of M/EI 
diagram as was shown in Figure 19.5.)
	 Since the segments possess equal EI and span length L, we can straightaway apply Eq. 19.6 for the 
three-moment equation successively for the segments 1, 2 and 3, keeping in mind that MA = 0 and also 
MD = 0 for segments 1 and 2. Clearly considering A, B and C as n − 1, n and n + 1, respectively, we get
for segments 1 and 2:

M M M
L

PL L
A B C+ + = − + − ×







4
6

0
9

4

92

2

as MA = 0, we get

	 4
8

27
M M

PL
B C+ = − 	 (1)

Again for segments 2 and 3:

M M M
L

PL L
B C D+ + = − × +







4
6

9

5

9
02

2

as MD = 0, we get

	 M M
PL

B C+ = −4
10

27
	 (2)

Solving Eqs. (1) and (2) simultaneously, we get

M
PL

M
PL

B Cand= − = −22

405

32

405
 

Note:XX  In Figure 19.7(b), the bending moment is

M
P
L

L L PL= 








 =

2

3 3

2

9

Therefore, area is

A
PL

L
PL= × × =1

2

2

9 9

2

and centroidal distance shall be 4L/9 from end C and 5L/9 from end B.

Now, we are in a position to draw the bending moment diagram for the entire beam as shown in 
Figure 19.8. The figure also shows the variation of shear force along the beam length, which we can 
only find after determining the support reactions.
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Figure 19.8  Shear force and bending moment diagrams.

We start with segment 2:

Clearly, RB is the reaction force due to load P and moments MB and MC on segment 2. So,

R
P M M

L

P

L

PL

S

P P
B

C B= +
−

= + −

 = −

3 3

1 10

40 3

2

81

or	 R
P

R P R PB C Band= ↑ = − = ↑25

81

56

81
( ) ( ) 	 (3)

Similarly, in segment 1:

	 R
M

L
P

R
P

B
B

Aand= = ↑ = ↓22

405

22

405
( ) ( ) 	 (4)

Finally, in segment 3:

	 R
P

R
P

C Dand= ↑ = ↓32

405

32

405
( ) ( ) 	 (5)

Adding the results of Eqs. (3)–(5), we get

R
P

R
P P P

A B = ↓ = + = ↑22

405

25

81

22

405

147

405
( ), ( )
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R
P P

P R
P

C Dand= + = ↑ = ↓56

81

32

405

312

405

32

405
( ) ( )

Note that R R R R PA B C D+ + + =  as expected. Therefore, the required beam reactions are:

	 R
P

R
P

R
P

R
P

A B C D  and= ↓ = ↑ = ↑ = ↓22

405

147

405

312

405

32

405
( ), ( ), ( ) ( ) 	 [Answer]

From Figure 19.8, we conclude that

M
PL

PLmax .= =184

1215
0 1514

which occurs under the load P.	 [Answer]

 E xample 19.2	

Refer to Figure 19.9 of the continuous cantilever beam. Determine the beam reactions and the bending 
moments at points B and C. Also draw the shear force and bending moment diagrams to identify the maxi-
mum shear force and maximum bending moment.

CBA
Note: EI = constant

15 kN/m

4 m 4 m

Figure 19.9  Example 19.2.

Solution
Let us consider the segments AB and BC as shown in Figure 19.10, where we consider the moment 
diagram only instead of M/EI diagram.

(a)
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qB
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woL3

12
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Figure 19.10  Moment diagrams.
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We note for segment AB, qA = 0 as A is the fixed-end of the beam. From second area-moment theorem, 
we can write:

tB/A = 0

As tan qA = tB/A/L. Therefore,

1

2 3

1

2

2

3
0

M
EI

L
L M

EI
L

LB A








 +










 =⋅

or	
M M

M MB A
A B6 3

0 2 0+ = ⇒ + = 	 (1)

Applying three-moment equation for segments AB and BC. As lengths are equal, we can apply  
Eq. (19.6) as

M M M
L

w L L
A B C

o+ + = − + ×






4
6

0
12 22

3

As end C is free, we can consider MC = 0. So the above equation becomes

	 M M
w L

A B
o+ = −4
4

2

	 (2)

Solving Eqs. (1) and (2) simultaneously, we get

	 M
w L

M
w L

A
o

B
oand= + = −

2 2

28 14
	 (3)

Having found the bending moments at A, B and C, we can now determine the support reactions as 
follows:
For segment AB:

R
M M

L
R

M M
L

RA
B A

B
A B

Aand= − = − = −

or	 R
w L

R
w L

A
o

B
oand= − =

3

28

3

28
	 (4)

Similarly, for segment BC, we find:

and	
R

w L M M

L

w L w L w L

R
w L M M

L

w L w L

B
o C B o o o

C
o B C o o

= +
−

= + =

= +
−

= − =

2 2 14

4

7

2 2 14

3ww Lo

7

� (5)
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Therefore, considering results from Eqs. (4) and (5) we get the support reactions as:

R
w L

R
w L w L w L

A
o

B
o o o= − = + =

3

28

3

28

4

7

19

28
,

and	 R
w L

C
o=

3

7
Note that RA + RB + RC = woL (as expected). Now we can draw the shear force and bending moment 
diagrams as shown in Figure 19.11.
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Figure 19.11  Shear force and bending moment diagrams.

From the diagram it is evident that

	 M MD B Area under shear force diagram between points B and= + [   D]
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Therefore,

M
w L L w L

D
o o= − + 








14

1

2

4

7

16

28

2

= − +
w L w Lo o

2 2

14

16

98

=
9

98

2w Lo

so,	 M
w L

max =
9

98

2
o 	 (6)

Now, putting numerical values L = 4 m and wo = 15 kN/m, we get support reactions as:

	

R R R

M M
A B C

A B

 kN   kN and  kN

 kN m  

= − = + =
= = −

6 43 2 71 25 71

8 57 17

. , . .

. , .114 0 kN m and  kN mCM =

The maximum shear force is 34.29 kN and maximum bending moment is 22.04 kN.	 [Answer]

 E xample 19.3	

Construct the shear force and bending moment diagrams for the continuous beam shown in Figure 19.12. 
Assume EI = constant.

A FB D EC

6 kN/m30 kN 30 kN

1 m 1 m1.5 m 1.5 m 1.5 m

Figure 19.12  Example 19.3.

Solution
Five segments of the given beam are considered as shown in Figure 19.13:

30 kN

1 m

A B
MA = 0 MB MB MC

1.5 m

B C

MD ME

1.5 m

D E
MA = 0

30 kN
ME

1 m

E F

MC MD

C
D

1.5 m

6 kN/m

Figure 19.13  Beam segments.
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Clearly, we can consider moments at B and E as 30 kN m as shown in Figure 19.14 (since there is no 
external loading on BC and DE, we have not drawn their moment diagrams).

MC
MC

1.5 m

B C30 kNm

1.5 m

0.75 m 0.75 m

C
D

MD

MD

30 kN m

1.5 m

D E

Mx

+
woL2

8
= 1687.5 Nm

A = 1687.5 Nm2

6 kN/m

Figure 19.14  Moment of beam segments.

Applying three-moment equation between the segments BC and CD:

M M MB C D+ + = − + ×4
6

1 5
0 1687 5 0 752.

( . . )

or	 M M MB C D  N m+ + = −4 3375

Putting MB = −30000 N m, the above equation becomes

	 4 26625M MC D  N m+ = 	 (1)

Again, looking at the symmetry of the problem, MC = MD. Therefore,

M MC D  N m  kNm= = =5325 5 325.

Also, MB = ME = −30 kN m and MA = MF = 0. Now, considering beam segment AB, we get

RB  kN= +30

again taking beam segment BC, we get

R
M M

LB
C B  kN=
−

= − − =5 325 30

1 5
23 55

. ( )

.
.

Therefore, by considering R R RB B AB B BC
= + , we get

RB kN= 53 55.
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Similarly, considering member CD, we get

R
M M

LC
D C kN= +
−

= + − =4 5 4 5
5 325 5 325

1 5
4 5. .

. .

.
.

or	 R R RC C BC C CD  kN kN= + = − + = −( . . ) .23 55 4 5 19 05

From symmetry, RD = RC = −19.05 kN and RE = RB = 23.55 kN. Let us now draw the shear force and 
bending moment diagrams as shown in Figure 19.15:
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8.70 kNm

B

C D

E FA

23.55 kN

5.325 kNm

A B C D E
F

30 kN
6 kN/m 30 kN

53.55 kN19.05 kN

1.5 m1.5 m 1.5 m1 m 1 m

53.55 kN 19.05 kN

23.55 kN

4.5 kN
A

4.5 kN
B C

D
E F

x (m)

30 kN

Vx
(kN)

x (m)

Mx
(kN m)

Bending moment diagram

30

30 kN

Parabolic

Figure 19.15  Shear force and bending moment diagrams.

	 [Answer]
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 E xample 19.4	

Refer to Figure 19.16 of the continuous beam. Assuming flexural rigidity to be constant, determine the 
support reactions and draw the shear force and bending moment diagrams.

A B C

5 m 4 m

D

2 m

15 kN8 kN/m

Figure 19.16  Example 19.4.

Solution
We show the two segments AB and BD noting their different spans in Figure 19.17:

qB qBB
A

MA

MA

Mx Mx

M B

MB

MB

+

A B

5 m

8 kN/m

qA = 0

 MD = 0

2.5 m 2.5 m

woL2

8
= 25 kNm

(a)

A1 = 83.33 kNm2

B
15 kN

D

4 m

2 m 2 m

(b)

A2 = 30 kNm2

+
15kNm

Figure 19.17  Moment diagrams of beam segments.

For segment AB:

Noting qA = 0 for beam segment AB and applying second area-moment theorem, we get:

t M MB A B A/
.= ⇒ × + ×








 + ×( ) ×



 =0

250

3

5

2

1

2
5

5 0

3

1

2
5

2 5

3
0

⇒ + = −
25

3

25

6

250 5

6

M MA B ( )( )
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or	 2 50M MA B kN m+ = − 	 (1)

Now, applying three-moment theorem for segments AB and BD above by applying Eq. 19.3(b) as 
LAB ≠ LBD, we get

5 2 5 4 4 6
250

3

5

2

1

5
30 2

1

4
M M MA B D+ + + = − × × + × ×



( )

as MD = 0, the above equation becomes

	 5 18 340M MA B kN m+ = − 	 (2)

Solving Eqs. (1) and (2), we get

M MA BkN m and kNm= − = −18 06 13 87. .  

Having determined bending moments at A and B, we can proceed to find the various support reactions. 
To this end, we take up the segments AB and BD once again. Thus, for the segment AB:

R
w L M M

LA
o B A

kN

= +
−

= + − +

= ↑

( )( ) ( )( ) . .

. ( )

2

8 5

2

13 87 18 06

5

20 838

Similarly,

R
w L M M

LB
o AB A B

AB

kN

= +
−

= + − +

= ↑

2

8 5

2

18 06 13 87

5

19 162

( )( ) . .

. ( )

Again, for segment BD:

R
P M M

LB
D B

BD

kN

= +
−

= + − −

= ↑

2

15

2

0 13 87

4

10 9675

( . )

. ( )

and	 R
P M M

LD
B D

BD

= +
−

= + − −
2

15

2

13 87 0

4

.

= ↑4 0325. ( )kN

Thus, adding results of the segments, we get

also	

R R R

M
A B D

A

kN  kN  and kN

 

= ↑ = ↑ = ↑
= −

20 838 30 1295 4 0325

18

. ( ), . ( ) . ( )

.006 kNm

� [Answer]
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Let us now proceed to draw the shear force and bending moment diagrams of the beam, incorporating 
reaction forces in their true senses in Figure 19.18.

A B C D

5 m 4 m
2 m

RA

MA

RDRB

Bending moment
diagram

Shear force
diagram

8 kN/m 15 kN

10.9675 kN

DBA C

B

A C D

2.6 m

9.0294 kN m

19.162 kN

20.838 kN

18.06 kNm
13.965 kNm

Parabolic

Mx
(kN m)

Vx
(kN)

4.0325 kN

7.97 kNm

x(m)

x(m)

Figure 19.18  Shear force and bending moment diagrams.

� [Answer]

 E xample 19.5	

Solve completely the continuous beam shown in Figure 19.19 and draw the shear force and bending 
moment diagrams.

10 kN/m 10 kN/m

A FB D EC

8 kN

2 m 2 m 2 m 3 m 1 m

Figure 19.19  Example 19.5.

SOM_Chapter 19.indd   791 6/26/2010   5:03:01 PM



792   • � Chapter 19—Statically I ndeterminate Beams –  Continuous Beams

Solution
Let us first consider the equivalent loading for the given beam as shown in Figure 19.20:

10 kN/m

A D E
8 kN

8 kN/m

10 kN/m
6 m

2 m 2 m

3 m

Figure 19.20  Equivalent loading.

Let us now consider the two segments as shown in Figure 19.21 along with the moment diagrams:

A D

MD

Mx

+

+
O

B

2 m

6 m

3 m
2 m

10 kN/m

10 kN/m

MA = 0

D E
ME = −8 kN mMD

8 kN

Parabolic

A2 = − 260
3

kNm2

LinearLinear

45 kNm

x

20 kN m
25 kN m

A1 = 180 kN m2
3 m

Note: No external loading and
area of moment diagram is 0

(a)

(b)

 
 
 

    
    
    2

1
3
2 (2 × 5)= − 2 × 2 × 20 + 20 × 2 +

Figure 19.21  Moment diagrams of beam segments.

Now, applying three-moment theorem for the segments considering MA = 0 and ME = −8 kN m, we 
get using the Eq. (19.5):

or

	
( )( ) ( ) ( )

{ ( / )}( )
0 6 2 6 3 3 8 6

180 260 3 3

6
0 280+ + + − = − − +




= −

= −

M

M

D

D 114 22. kN m

Hence, bending moments at the relevant points are

                M M MA D EkN m kN m and kN m= = − = −0 14 22 8, .  
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Correspondingly, the support reactions at various points are calculated by considering the two 
segments separately. Accordingly, if we take the segment AD:

RA kN kN= + − + − − = ↑( )( ) ( )( ) .
. ( )

10 6

2

10 2

2

14 22 0

6
17 63

and	 RD kN kN= + − + − − = ↑( )( ) ( )( ) ( . )
. ( )

10 6

2

10 2

6

0 14 22

6
22 37

Similarly, considering segment DE:

R
M M

LD
E D

DE

kN kN= +
−

= − − − = ↑0
8 14 22

3
2 07

( . )
. ( )

and	 RE kN= + − − − = ↑8
14 22 8

3
5 93

. ( )
. ( )

Therefore, the support reactions are: = ↑ = ↑ = ↑17 63 24 44 5 93. ( ), . ( ) . ( ).kN kN and kNERD R

� [Answer]

[Note that RA + RD + RE = (17.63 + 24.44 + 5.93) kN = 48 kN as expected.]

Now, we are in a position to draw the shear force and bending moment diagrams of the original beam 
as shown in Figure 19.22:

A B C D E F

10 kN/m 10 kN/m
8 kN

2 m 2 m 2 m 3 m 1 m

17.63 kN 24.44 kN 5.93 kN

17.63 kN

A B C

D E F2.37 kN
1.76 m

22.37 kN

8.0 kN

2.07 kN
x(m) Shear force diagram

15.51 kNm
15.23 kNm

A B C
D E F

14.25

Parabolic

Linear
10.49 kNm

Linear

8.0 Linear

Mx (kNm)

Vx(kN)

Parabolic

Bending moment diagramx(m)

Figure 19.22  Shear force and bending moment diagrams.
� [Answer]
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	 	 Summary

In this chapter, we initially discussed about 
statically indeterminate beams. Although we 
have come across such beams in our earlier chap-
ters also, a methodical analysis was lacking to 
determine the support reactions in terms of shear 
force and bending moments at various locations 

on the beam. In that regard, we have carefully 
introduced three-moment theorem to analyse 
such cases in a more elegant manner. Various 
forms of the equation are presented to cope up 
with different conditions of physical arrange-
ments of beams.

	 	 Key Terms

Statically determinate beam

Statically indeterminate beam

Degree of indeterminacy

Continuous beam

Principle of superposition

Linear structure

Second area-moment 
  theorem

Clapeyron’s three-moment 
  equation

Shear force diagram

Bending moment diagram

	 	R eview Questions

	 1.	 What do you mean by statically indetermi-
nate beam?

	 2.	 Explain the degree of indeterminacy of stati-
cally indeterminate beam.

	 3.	 What is a continuous beam?

	 4.	 Explain the second theorem of area 
moment.

	 5.	 What do you mean by three-moment 
equation?

	 6.	 Derive Clapeyron’s three-moment equation.

	 	N umerical Problems

	 1.	 A uniform span continuous beam is shown 
in Figure 19.23 with equal overhangs. Find 
a:L such that MB = MC = MD.

A B

wo

C Da L L a

Figure 19.23  Problem 1.

	 2.	 For the above problem, find a:L such that,  
RB = RC = RD.

	 3.	 For the cantilever beam shown in Figure 
19.24, determine the support reactions at the 
fixed-end of the beam.

A
B C

D

5 m 4 m 2 m

10 kN/m
6 kN/m

Figure 19.24  Problem 3.

	 4.	 Calculate the support reactions at points  
A and D of the beam shown in Figure 19.25.
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L LL

A B C D
wo

Figure 19.25  Problem 4.
		  [Hint : 

B

C
B

CB

x

wo

CMx

Vx

Parabolic

L

Cubical parabola xB
− xC

−
x

(see Hint)

A = woL2/3

woL

6

woL

3

Figure 19.26  Hint for Problem 4.

		  If we take segment BC, the shear force and 
bending moment diagram shown in Figure 
19.26 results due to the given external 
loading.

		  You can easily show the equation of parabolic 
shear force variation, as

 V
w L w

L
x

M

xx
x= − 




=o o d

d6 2
2

		  Therefore,

M
w L

x
w

L
xx =







− 



o o

6 6
3

		  The area A in the figure is

A M x
w L

x

L

= =∫
0

3

24
d o

		  Also,

x
xM x

A
L

x
Lx

L

B C

d
and  = = =

∫0 8

15

7

15
.

		  Taking segments AB, BC and CD and apply-
ing the three-moment equation, Eq. (19.6) 
we get

      
M M

w L
A B

o = = −0
45

2

, ,

 andC
o

DM
w L

M= − =
2

36
0

		  Thus clearly, RA = -wo L/45 and RD = -wo L/36 
from the free-body diagrams of segment AB 
and CD.]

	 5.	 A beam of length L carries a uniformly dis-
tributed load wo/unit length and rests on 
three supports, two at the ends and one in 
the middle. Find how much the middle sup-
port is lower than the end ones in order that 
the pressures on the three supports are 
equal.

	 6.	 Calculate the moments acting at A and B for 
the following beam shown in Figure 19.27:

20 kN/m
80 kN

9 m 3 m 3 m

B
A

C

Figure 19.27  Problem 6.
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	 	A nswers

Numerical Problems

	 1.	 1 6/

	 2.	 0.44

	 3.	 RA = 15.45 kN; MA = −16.49 kN m

	 4.	 R w L R w LA o D o and = − = −/ /45 36

	 5.	 Middle support o= 3

384

4w L

EI

	 6.	 MA = 51.9 kN m; MB = 0 kN m
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