
 
 

Multiple-Choice Questions 
 

GATE (2000–2009) 
 
 

Year 2000 
 
1. In a biaxial stress problem, the stresses in x- and y-directions are x = 200 MPa, Y = 100 MPa. The 

maximum principal stress in MPa is:  
(a) 50 
(b) 100 
(c) 150 
(d) 200 

 
Answer: (d) 
Reference: Chapter 4 
 

2. A steel shaft ‘A’ of diameter d and L is subjected to a torque T. Another shaft ‘B’ made of aluminium of 
the same diameter d and length 0.5L is also subjected to the same torque T. The shear modulus of steel is 
2.5 times that of aluminium. The shear stress in the steel shaft is 100 MPa. The shear stress in the 
aluminium shaft, in MPa, is:  
(a) 40 
(b) 50 
(c) 100 
(d) 250 

 
Answer: (c) 

Explanation: From 3
max 16 /T d    shows max depends only on torque and diameter. Since both shifts 

are of equal size and carry the same torque, shear stresses must be the same in both cases. 
 
Reference: Chapter 2 
 

3. A simply supported beam carries a load P through a bracket as shown in Figure 1. The maximum bending 
moment in the beam is:  

 
 

Figure 1 Question 3. 
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Answer: (b) 
Explanation: We start drawing the free-body diagram of the beam as shown in Figure 2. 
 



 
 

Figure 2 Explanation of Question 3. 
 
Taking a section just right to the concentrated load P at C, we get: 
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Reference: Chapter 5 
 

4. The stress–strain behaviour of a material is shown in Figure 3. 
 

 
 

Figure 3 Question 4. 
 

Its resilience and toughness, in Nm and m3, respectively, are:  
(a) 28  104, 76  104 

(b) 28  104, 48  104 

(c) 14  104, 90  104 

(d) 76  104, 104  104 
 

Answer: (c) 
 
Explanation: The resilience is calculated as 

6 3 4 31
Resilience 70(10) 0.004 Nm/m 14 10 Nm/m

2
      

The toughness is calculated as  

6 3 4 31 1
Toughness 70(10 ) 0.004 (70 120) 0.008 Nm/m 90 10 Nm/m

2 2
          

 
Reference: Chapter 10 
 

Year 2001 
 

5. The shape of the bending moment diagram for a uniform cantilever beam carrying a uniformly 
distributed load over its length is:  
(a) a straight line. 
(b) a hyperbola. 
(c) an ellipse. 
(d) a parabola. 

 
Answer: (d) 
Reference: Chapter 5 
 
 
 
 
 



 
 

6. Bars AB and BC, each of negligible mass, support load P as shown in Figure 4. In this arrangement, 
 

 
Figure 4 Question 6. 

 
(a) Bar AB is subjected to bending but bar BC is not. 
(b) Bar AB is not subjected to bending but bar BC is. 
(c) neither bar AB nor bar BC is subjected to bending 
(d) both bars AB and BC are subjected to bending. 

 
Answer: (d) 
Reference: Chapter 5 
 

7. Two helical tensile springs of the same material and also having identical mean coil diameter and weight, 
have wire diameters d and d/2.The ratio of their stiffness constants is: 
(a) 16.0 
(b) 4.0 
(c) 64.0 
(d) 128.0 
 
Answer: (a) 
Explanation: We know stiffness of spring, k is 

4
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Reference: Chapter 2 
 

8. The maximum principal stress for the stress shown in Figure 5 is: 
 

 
 

Figure 5 Question 8. 
 

(a)  
(b) 2 

(c) 3 

(d) 1.5 
 



 
 
 
 
 
Answer: (b) 
Explanation: 

 
2

2
max

2 2

1

2 2

0 2

xx yy

xx yy xy

 
   

  

 
    

 

   

 

Reference: Chapter 4 
 

Year 2002 
 

9. The total area under the stress–strain curve of a mild steel specimen tested up to failure under tension is 
a measure of: 
(a) ductility. 
(b) ultimate strength. 
(c) stiffness. 
(d) toughness. 
 
Answer: (d) 
Reference: Chapter 10 
 

10. If the wire diameter of a closed-coil helical spring subjected to compressive load is increased from 1 cm 
to 2 cm, other parameters remaining the same, the deflection will decrease by a factor 
(a) 16 
(b) 8 
(c) 4 
(d) 2 
 
Answer: (a) 
Explanation: Refer the explanation of Question 7 above. 
Reference: Chapter 2 
 

11. The relationship between Young’s modulus (E), bulk modulus (K) and Poisson’s ratio () is given by: 

(a) 3 (1 2 )E K    

(b) 3 (1 2 )K E    

(c) 3 (1 )E K    

(d) 3 (1 )K E    

 
Answer: (a) 
Explanation: 
We know that volumetric strain, 

h
V

3
(1 2 )

E


    

where h is the hydrostatic stress or mean stress. Hence, 

h
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Reference: Chapters 1 and 9 
 

Year 2003 
 

12. The second moment of a circular area about the diameter is given by (D is the diameter) 
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Answer: (d) 
Reference: Chapter 6 
 

13. A concentrated load of P acts on a simply supported beam of span L at a distance L/3 from the left 
support. The bending moment at the point of application of the load is given by: 

(a) 
3

PL
 

(b) 
2

3
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(c) 
9
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Answer: (d) 
Explanation: Refer to Figure 6. Considering free-body diagram of AB [Figure 6(b)], we get 
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Figure 6 Explanation for Question 13. 
 
Reference: Chapter 5 
 

14. Two identical circular rods of same diameter and same length are subjected to same magnitude of axial 
tensile force. One of the rods is made of mild steel having modulus of elasticity 206 GPa. The other rod is 
made out of cast iron having the modulus of elasticity of 100 GPa. Assume both the material to be 
homogeneous and isotropic and the axial force causes the same amount of uniform stress in both the 
rods. The stresses developed are within the proportional limit of the respective materials. 
Which of the following observations is correct? 
(a) Both rods elongate by the same amount. 
(b) Mild steel rod elongates more than the cast iron. 
(c) Cast iron rod elongates more than the mild steel rod. 
(d) Stresses are equal and strains are also equal in both the rods. 
 
Answer: (c) 
Explanation: 

St CI St CI CI St
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Reference: Chapter 1 
 



15. The beams, one having square cross-section and another circular cross-section, are subjected to the 
same amount of bending moment. If the cross-sectional area as well as the material of both the beams 
are the same then 
(a) maximum bending stress developed in both the beams is the same. 
(b) the circular beam experiences more bending stress than the square one. 
(c) the square beam experiences more bending stress than the circular one. 
(d) as the material is same both beams will experience same deformation. 
 
Answer: (b) 
Explanation: Here for square beam: 

max 3 2
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a Aa
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for circular beam: 
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and so, max max   . 

 
Reference: Chapter 6 
 

16. Maximum shear stress developed on the surface of a solid circular shaft under pure torsion is 240 MPa. If 
the shaft diameter is doubled, then the maximum shear stress developed corresponding to the same 
torque will be 
(a) 120 MPa 
(b) 60 MPa 
(c) 30 MPa 
(d) 15 MPa 
 
Answer: (c) 
Explanation: 

max max3 3

16 1T

d d
   


 

Therefore, 
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max3 3
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or max 30 MPa   . 

 
Reference: Chapter 2 
 

17. A simply supported laterally loaded beam was found to deflect more than a specified value. Which of the 
following measures will reduce deflection? 
(a) Increase the area moment of inertia 
(b) Increase the spam of the beam 
(c) Select a different material having lesser modulus of elasticity 
(d) Increase the magnitude of the load. 
 
Answer: (a) 
Reference: Chapter 7 
 



18. A shaft subjected to torsion experiences a pure shear stress on the surface. The maximum principal stress 

on the surface which is at 45 to the axis will have a value 

(a) cos45  

(b) 2 cos45  

(c) 2 sin 45  

(d) 2 sin 45 cos45  
 
Answer: (d) 
Explanation: 
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Now, xx is the stress in x–x direction [Figure 7(a)] and yy is the stress in y–y direction. 
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Similarly, 
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Finally, shear stress in x–y axes, xy is given by 

1
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2
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Alternative explanation: You can arrive at the above results also very quickly by drawing the Mohr’s 
circle of stresses as shown in Figure 7(a). 

 
(b) 

 
Figure 7 (a) Explanation, (b) alternative explanation for Question 18. 

Thus, from the above figure,  

; ; 0x x y y x y              

Putting these in the equation of max, we get the same result as above. 
 
Reference: Chapter 4 
 



19. The state of stress at a point P in a two-dimensional loading is such that the Mohr’s circle is a point 
located at 175 MPa on the positive normal stress axis. 
(i) Determine the maximum and minimum principal stresses with respect from the Mohr’s circle. 
(a) (+175, –175) MPa 

(b) (+175, +175) MPa 

(c) (0, –175) MPa 

(d) (0,0) 
 
(ii) Determine the directions of maximum and minimum principal stresses at the point P from the Mohr’s 
circle: 
(a) 0, 90 

(b) 90, 0 

(c) 45, 135 
(d) All directions 
 
Answer: (i) (b); (ii): (d) 
Explanation: 
(i) For stress in one direction and zero stress in its orthogonal direction (i.e., uniaxial stress consideration) in 

biaxial stress case, Mohr’s circle will degenerate to a point. 
Reference: Chapter 4 
 

Year 2004 
 

20. In terms of Poisson’s ratio (v), the ratio of Young’s modulus (E) to shear modulus (G) of elastic material is 
(a) 2(1 )  

(b) 2(1 )  

(c) (1 )/2  

(d) (1 )/2  

 
Answer: (a) 
Reference: Chapters 1 and 9 
 

21. The following figure (Figure 8) shows the state of stress at a point in a stressed body. The magnitudes of 
normal stresses in the x and y direction are 100 MPa and 20 MPa, respectively. The radius of Mohr’s 
stress circle representing this state of stress is: 

 
 

Figure 8 Question 21. 
(a) 120 
(b) 80 
(c) 40 
(d) 60 
 
Answer: (d) 
Explanation: 
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Reference: Chapter 4 
 



22. A torque of 10 N m is transmitted through a stepped shaft as shown in Figure 9. The torsional stiffness of 
individual sections of lengths MN, NO and OP are 20 N m/rad, 30 N m/rad and 60 N m/rad, respectively. 
The angular deflection between the ends M and P of the shaft is:  

 
 

Figure 9 Question 22. 
(a) 0.5 rad 
(b) 1.0 rad 
(c) 5.0 rad 
(d) 10.0 rad 
 
Answer: (b) 
Explanation: Torsional springs are in series. Therefore, equivalent torsional stiffness, (kt)e is given by 

       t t t te MN NO OP
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T

k
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
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Reference: Chapter 2 
 

23. The figure below (Figure 10) shows a steel rod of 25 mm2 cross-sectional area. It is loaded at four points, 
K, L, M and N. Assume E = 200 GPa. The total change in length of the rod due to loading is: 

 
Figure 10 Question 23. 

(a) 1 m 

(b) 10 m 

(c) 16 m 

(d) 20 m 
 
Answer: (b) 
Explanation: Refer to free-body diagram of different segments: 

 
 

Figure 11 Explanation for Question 23. 
Therefore, 

L/K 3

(100)(500)
mm 10μm

(25)(200)(10 )
     

M/L 3

(150)(800)
mm 24μm

(25)(200)(10 )
     



and N/M 3

(50)(400)
mm 4μm

(25)(200)(10 )
      

Therefore, 

N/K L/K M/L N/M

(10 24 4)μm 10μm

     

    
 

Reference: Chapter 1 
 
 

24. A solid circular shaft of 60 mm diameter transmits a torque of 1600 N m. The value of maximum shear 
stress developed is: 
(a) 37.72 MPa 
(b) 47.72 MPa 
(c) 57.72 MPa 
(d) 67.72 MPa 
 
Answer: (a) 
Explanation: 

3

max 3 2

16 (16)(1600)(10 )
37.72MPa

mm

T N

d


 
 


 

Reference: Chapter 2 
 

25. A steel beam of breadth 120 mm and height 750 mm is loaded as shown in Figure 12. Assume ESteel = 200 
GPa. 

 
 

Figure 12 Question 25. 
 
(i) The beam is subjected to a maximum bending moment of 
(a) 3375 kN M 
(b) 4750 kN m 
(c) 6750 kN m 
(d) 8750 kN m 
 
(ii) The value of maximum deflection of the beam is: 
(a) 93.75 mm 
(b) 83.75 mm 
(c) 73.75 mm 
(d) 63.75 mm 
 
Answer: (i) (a); (ii) (a) 
Explanation: 
(i) For uniformly distributed load with intensity wo, we get 

2 2
o
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(120)(15)
kNm 3375 kNm

8 8

w L
M     

(ii) 
4 4 4

o o o
max 3

3
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1384 32
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w L w L w L

EI Ebh
E bh

   
 

 
 

 

Reference: (i) Chapter 5; (ii) Chapter 7 
 

26. A uniform stiff rod of length 30 mm and having a weight of 300 N is pivoted at one end and connected to 
a spring at the other end (Figure 13). For keeping the rod vertical in a stable position, the minimum value 
of spring constant k needed is: 



 
 

Figure 13 Question26. 
(a) 300 N/m 
(b) 400 N/m 
(c) 500 N/m 
(d) 1000 N/m 
 
Answer: (d) 

Explanation: For small angle () of tilting from vertical position, we get bending moment about O as: 

 ( )(150sin ) ( )(300 )(300) 0w k    

or 2

2

(300)(150)
( )(150)δ 300 δ 0

300
w k k       

which gives k = 0.5 N/m = 500 N/mm. 
 
Reference: Chapter 8 
 

Year 2005 
 

27. A uniform, slender cylindrical rod is made of a homogeneous and isotropic material. The rod rests on a 
frictionless surface and is heated uniformly. If the radial and longitudinal thermal stresses are 
represented by r and z, respectively, then: 

(a) 0, 0r z    

(b) 0, 0r z    

(c) 0, 0r z    

(d) 0, 0r z     

 
Answer: (a) 
Reference: Chapter 1 
 

28. Two identical cantilever beams are supported as shown in Figure 14, with their free ends in contact 
through a rigid roller. After the load P is applied, the free ends will have 

 
 

Figure 14 Question 28. 
 
(a) equal deflections but not equal slopes. 
(b) equal slopes but not equal deflections. 
(c) equal slopes as well as equal deflections. 
(d) neither equal slopes nor equal deflections. 
 
Answer: (a) 
Reference: Chapter 7 
 

29. Two shafts AB and BC of equal length and diameters d and 2d are made of the same material (Figure 15). 
They are joined at B through a shaft coupling, while the ends A and C are built-in (cantilevered). A 
twisting moment T is applied to the coupling. If TA and TC represent the twisting moments at the ends A 
and C, respectively, then: 



 
 

Figure 15 Question 29. 
 
(a) TC = TA 
(b) TC = 8 TA 
(c) TC = 16 TA 
(d) TA = 16 TC 

 

Answer: (c) 

Explanation: Clearly, B/A B/C  , so 
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T lT l

GJ GJ
  

or C A CA

1 2 1 2 1 2

T T TT T

J J J J J J


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 
 

 

4

1

4 4
2

1 132 .
16(2 ) 2

32

A

C

d

T J

T J d



   


 

which gives TC = 16TA. 

 
 

Figure 16 Explanation for Question 29. 
Reference: Chapter 2 
 

30. A beam is made up of two identical bars AB and BC by hinging them together at B (Figure 17). The end A 
is built-in (cantilevered).and end C is simply supported. With the load P acting as shown, the bending 
moment at A is: 

 
 

Figure 17 Question 30. 
(a) 0 
(b) PL/2 
(c) 3PL/2 
(d) indeterminate 
 
Answer: (a) 
Explanation: Let us consider the free-body diagrams of the segments BC and AB in Figure 18. 
 



 
 

Figure 18 Question 30. 
From Figure 18(a), due to the symmetry, we conclude that RB = P/2 and from Figure 18(b), considering 
MA = 0 

A B Aor / 2M R L M PL   

Reference: Chapter 5 
 

31. A cantilever beam carries antisymmetric load shown in Figure 19, where wo is the peak intensity of the 
distributed load. Qualitatively, the correct bending moment diagram for this beam is 

 
 

Figure 19 Question 31. 

 
 
Answer: (c) 
Explanation: Shear forces at A and B are 0 and hence bending moment diagram must have horizontal 
tangents at these ends. 
Reference: Chapter 5 
 

32. A cantilever beam has square cross-section of 10 mm 10 mm. It carries a transverse load of 10 N (Figure 
20). Considering only the bottom fibres of the beam, the correct representation of the longitudinal 
variation of the bending stress is 
 

 
 

Figure 20 Question 32. 
 
Answer: (a) 
Explanation: We note Mmax = Moment at fixed end = 10 N m. Variation of bending moment is linear up to 
midpoint and then becomes zero. 



3
max

max 3 3 2

6 (6)(10)(10 ) N
60 MPa

(10) mm

M

a
     

Hence (a) is correct. 
Reference: Chapter 6 
 

33. The Mohr’s circle for plane stress for a point in a body is shown in Figure 21. The design is to be done on 
the basis of maximum shear stress theory for yielding. Then, yielding will just begin if the designer 
chooses a ductile material whose yield strength is:  
 

 
 

Figure 21 Question 33. 
 
(a) 45 MPa 
(b) 50 MPa 
(c) 90 MPa 
(d) 100 MPa 
 
Answer: (d) 
Explanation: Here for plane stress condition the principal stresses are: 

1 2 30 MPa, 10 MPa, 100 MPa        

Thus, 

max min
max 50MPa

2

 



   

According to maximum shear stress theory, yielding initiates when 

yp

max max min yp
2


        

so yp = 100 MPa. 
Reference: Chapter 4 
 

Year 2006 
 

34. For a circular shaft of diameter d subjected to torque T, the maximum value of the shear stress is: 

(a) 
3

64T

d
 

(b) 
3

32T

d
 

(c) 
3

16T

d
 

(d) 
3

8T

d
 

 
Answer: (c) 
Reference: Chapter 2 
 

35. A pin-ended column of length L, modulus of elasticity E and second moment of area of the cross-section I 
is loaded centrically by a compressive load P. The critical buckling load (PCr) is given by: 

(a) Cr 2 2

EI
P

L



 



(b) 
2

Cr 23

EI
P

L


  

(c) 
2

Cr 2

EI
P

L


  

(d) 
2

Cr 24

EI
P

L


  

 
Answer: (c) 
Reference: Chapter 8 
 

36. According to von Mises’ distortion energy theory, the distortion energy density under three-dimensional 
stress state is represented by 

(a) 2 2 2
1 2 3 1 2 2 3 3 1

1
2 ( )

2E
              
 

 

(b) 2 2 2
1 2 3 1 2 3 2 3 1

1 2
2( )

6E


        


     
 

 

(c) 2 2 2
1 2 3 1 2 3 2 1 3

1
( )

3E


        


     
 

 

(d) 2 2 2
1 2 3 1 2 2 3 3 1

1
( )

3E
              
 

 

 
Answer: (c) 
Reference: Chapter 11 
 

37. A steel bar of 40 mm  40 mm square cross-section is subjected to an axial compressive load of 200 kN. If 
the length of the bar is 2 m and E = 200 GPa, the compression of the bar will be 
(a) 1.25 mm 
(b) 2.70 mm 
(c) 4.05 mm 
(d) 5.40 mm 
 
Answer: (a) 
Explanation: 

3 3

2 3

(200)(10 )(2)(10 )
mm 1.25mm

(40) (200)(10 )

PL

AE
     

Reference: Chapter 1 
 

38. A bar having a cross-sectional area of 700 mm2 is subjected to axial loads at the position indicated in 
Figure 22. The value of stress in the segment QR is 

 
 

Figure 22 Question 38. 
 
(a) 40 MPa 
(b) 50 MPa 
(c) 70 MPa 
(d) 120 MPa 
 
Answer: (a) 
Explanation: Let us draw the free-body diagram of different segments as shown in Figure 23: 



 
 

Figure 23 Question 38. 
 

3
QR

QR 2 2
QR

28(10 ) N N
40 40 MPa

700 mm mm

P

A
      

Reference: Chapter 1 
 

39. A simply supported beam of span length 6 m and 75 mm diameter carries a uniformly distributed load of 
1.5 kN/m. 
(i) What is the maximum value of bending moment? 
(a) 9 kN m 
(b) 13.5 kN m 
(c) 6.75 kN m 
(d) 8.1 kN m 
 
(ii) What is the maximum value of bending stress? 
(a) 162.98 MPa 

(b) 325.95 MPa 
(c) 625.95 MPa 
(d) 651.90 MPa 

 
Answer: (i) (c); (ii) (a) 
Explanation: 
(i) 

2 2
o

max

(1.5)(6)
kN m 6.75 kNm

8 8

w L
M     

(ii) 
6

max
max 3 3 2 2

32 (32)(3.75)(10 ) N N
162.98 162.98MPa

(75) mm mm

M

d
    

 
 

 
Reference: (i) Chapter 5; (ii) Chapter 6 

 
Year 2007 

 
40. In a simply supported beam loaded as shown in Figure 24, the maximum bending moment in N m is: 

 
 

Figure 24 Question 40. 
(a) 25 
(b) 30 
(c) 35 
(d) 60 
 
Answer: (d) 
Explanation: Let us draw the free-body diagram of the beam as shown in Figure 25: 



 
 

Figure 25 Explanation for Question 40. 
 

Therefore, from B A AM 0 (100)(0.5) 10 0 40NmR R


         . Now,  taking a section just right 

to point C gives us the following free-body diagram in Figure 26: 

 
 

Figure 26 Free-body diagram. 
 
Taking  

C 0 (40)(0.5) 10 0 30 Nmx xM M M


        . 

 
Reference: Chapter 5 
 

41. A steel rod of length L and diameter D, fixed at both ends, is uniformly heated to a temperature rise of 

T The Young’s modulus is E and the coefficient of linear expansion is . The thermal stress in the rod is: 
(a) 0 
(b) T  

(c) E T  

(d) E TL  

 
Answer: (c) 
Explanation: We know that (assuming the rod-axis to be along the x-axis): 

 
1

xx xx T
E
      

So the rod is fixed at both ends, 0xx  , thus, xx E T    . 

 
Reference: Chapter 1 
 

42. A uniformly loaded propped cantilever beam and its free-body diagram are shown in Figure 27. The 
reactions are: 
 

 
 

Figure 27 Question 42. 

(a) 
2

1 2

5 3
, ,

8 8 8

qL qL qL
R R M    

(b) 
2

1 2

3 5
, ,

8 8 8

qL qL qL
R R M    

(c) 1 2

5 3
, , 0

8 8

qL qL
R R M    



(d) 1 2

3 5
, , 0

8 8

qL qL
R R M    

 
Answer: (a) 
Explanation: We note from Figure 28 that: 

1 2R R qL   and 
2

2
2

qL
M R L   

Bending-moment at any section at a distance x from left-end is given by: 
2 2

1 1
2 2

x x

qx qx
M M R x M R x M        

 
 

Figure 28 Explanation for Question 42. 
 
Now, 

2

2 1( ) .
2

x

qx
EI y M R x M       

Thus, 

1
1 1( )

2 6

R x qx
EI y Mx c      

at 1 10, 0 0x y c    . so 

2 3
1

1( )
2 6

R x qx
EI y Mx     

or 
3 2 4

1
2( )

6 2 24

R x Mx qx
EI y c      

Again at 20, 0 0x y c    , so 

3 2 4
1( )
6 2 24

R x Mx qx
EI y      

3 2 4
1( ) 0
6 2 24x L

R L ML qL
EI y


      

Thus, 

 
2

21
14 12

6 2 24

R L M qL
R L M qL      (1) 

Again, 
2 2

1 1( )
2 2

qL qL
M qL R R L M        

or, 2
14 4 2R L M qL     (2) 

So from Eqs. (1) and (2), 
2

2
2 1

3 5
8

8 8 8

qL qL q
M qL M R R          

 
Reference: Chapter 7 
 

43. A 200  100  500 mm steel block is subjected to a hydrostatic pressure of 15 MPa. The Young’s modulus 
and Poisson’s ratio of the material are 200 GPa and 0.3, respectively. The change in the volume of the 
block in mm3 is: 
(a) 85 
(b) 90 
(c) 100 
(d) 110 
 



Answer: (b) 
Explanation: We know that: 

V h

3(1 2 )

E





   

where h  is the hydrostatic stress. 

h h3 (1 2 ) 3 (1 2 )V
V V

V E E

    
    

3 3

3

(3)(15)(1 2 0.3)
(200 100 500)mm 90mm

(200)(10 )
V

 
      

 
Reference: Chapter 9 
 

44. A stepped steel shaft shown in Figure 29 is subjected to 10 N m torque. If the modulus of rigidity in 80 
GPa, the strain energy in the shaft in N m: 
(a) 4.12 
(b) 3.46 
(c) 1.73 
(d) 0.86 
 

 
 

Figure 29 Question 44. 
 
Answer: (c) 
Explanation: 

0.1 0.12 2 2

1 2 1 20 0

1 1 1

2 2 2

T T T L
U dx dx

GJ GJ G J J

 
     

 
   

2

4 4
1 2

16 1 1T L
U

G d d

 
      

 

2
3

9 4 4

(16)(10 )(0.1) 1 1
N m 1.73 10 N m 1.73 N mm

( )(80)(10 ) 0.05 0.025
U  

      
  

 
Reference: Chapter 10 
 

45. A machine frame shown in Figure 30 is subjected to a horizontal force of 600 N parallel to the z-direction. 
 

 
 

Figure 30 Question 45. 
 
(i) The normal and shear stresses in MPa at point P are, respectively, 



(a) 67.9 and 56.6 
(b) 56.6 and 67.9 
(c) 67.9 and 0.0 
(d) 0.0 and 56.6 
 
(ii) The maximum principal stress in MPa and the orientation of the corresponding principal plane in 
degree are respectively 
(a) – 32.0 and – 29.52 
(b) 100.0 and 60.48 
(c) – 32.0 and 60.48 
(d) 100 and – 29.52 
 
Answer: (i) (a); (ii) (d) 
Explanation: 
(i) Bending moment is 

(600) (0.3) Nm 180 NmM     

and torsional moment is 
 (600)(0.5) Nm  300 NmT    

so normal stress at P is 
3

3 3 2

32 (32)(180)(10 ) N
67.9 MPa

( )(30) mm

M

d
 


 

and shear stress at P is 
3

3 3 2

16 (16)(300)(10 ) N
56.6 MPa

(30) mm

T

d
 


 

So, P P67.9 MPa, 56.6 MPa    

(ii) Consider Figure 31 and Mohr’s circle in Figure 32. 

 
 

Figure 31 Explanation for Question 45. 
 

 
 

Figure 32 Mohr’s circle. 
 

Therefore, from the above Mohr’s circle, we get 

2
2

max

67.9 67.9
56.6 100.0MPa

2 2


 
    

 
 

56.6
tan 2 29.52

67.9
67.9

2

   



 

So, max = 100 MPa and  = 29.52.  
 
Reference: (i) Chapter 4; (ii) Chapter 12. 
 
 
 



 
 

Year 2008 
 

46. The strain energy stored in the beam with flexural rigidity EI and loaded as shown in Figure 33 is 
 

 
 

Figure 33 Question 46. 
 

(a) 
2 3
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(b) 
2 32

3

P L
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(c) 
2 34

3

P L

EI
 

(d) 
2 38

3

P L

EI
 

 
Answer: (c) 
Explanation: From the given beam loading (Figure 34), we can show the free-body diagram as 
 

 

 
Figure 34 Explanation for Question 46 

 
The rest of the beam loading is symmetric. So, we consider one-half of the beam shown by the chain line 
in Figure 34(a). 
 

; 0

( )

; 2

x

Px x L
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PL L x L

  
 

   
   

 

Therefore, Ub, that is, strain energy due to bending is 
2 22 2

2 2 2 2
b

0 0

2 3 2 3
2 3

d d 1
2 d d

2 2

1 4

3 3

L L L L
x x

L L

M x M x
U P x x P L x

EI EI EI

P L P L
P L

EI EI

   
      

      

 
   

 

   
 

 
Reference: Chapter 10 
 

47. For the component loaded with a force F as shown in Figure 35, axial stress at corner point P is 
 



 
 

Figure 35 Question 47. 
 

(a) 
3

(3 )

4

F L b

b


 

(b) 
3

(3 )

4

F L b

b


 

(c) 
3

(3 4 )

4

F L b

b


 

(d) 
3

(3 2 )

4

F L b

b


 

 
Answer: (d) 
Explanation: Stress at a point P is caused due to direct tensile stress and due to the bending caused by 

the bending moment, M = F(L  b). Thus, 

P 2 3

( )

4 (1 /12)(2 )(2 )

F F L b b

b b b


 
   

2 3

3 ( )

4 4

F F L b

b b


   

Thus, 

 P 3 3

(3 2 )
3 3

4 4

F F L b
b L b

b b



     

Reference: Chapter 12 
 

48. The rod PQ of length L and with flexural rigidity EI is hinged at both ends (Figure 36). For what minimum 
force F is it expected to buckle? 
 

 
 

Figure 36 Question 48. 
 
 

(a) 
2

2

EI

L


 

(b) 
2

2

2 EI

L


 

(c) 
2

22

EI

L
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(d) 
2

22

EI

L


 

 



Answer: (c) 

Explanation: Clearly, PQ cos45F F  

or 
2

PQ 2
2

EI
F F

L


   

so, 
2

22

EI
F

L


  

Reference: Chapter 8 
 

Year 2009 
 

49. A solid circular shaft of diameter d is subjected to a combined bending moment M and torque, T. The 
material property to be used for designing the shaft using the following relation is 

2 2

3

16
M T

d



 

(a) ultimate tensile strength u( )  

(b) tensile yield strength y( )  

(c) torsional yield strength y( )  

(d) endurance strength e( )  

 
Answer: (c) 
Reference: Chapter 12 
 

50. A solid shaft of diameter d and length L is fixed at both ends. A torque To is applied at a distance L/4 from 
the left-end as shown in Figure 37: 
 

 
 

Figure 37 Question 50. 
 
The maximum shears stress in the shaft is: 

(a) o

3

16T

d
 

(b) o

3

12T

d
 

(c) o

3

8T

d
 

(d) o

3

4T

d
 

 
Answer: (b) 
Explanation: Let us consider the free-body diagram of the shaft and its segments as shown in Figure 38: 
 

 
 

Figure 38 Explanation for Question 50. 



 
From Figure 38(a) above:  

 A o B A B oT T T T T T       (1) 

From Figures 38(b) and (c): 

 A
C/A C A C

4

T L

GJ
        (2) 

and B
C/B C B C

3

4

T L

GJ
        (3) 

 
But considering angular twist directions of point C in Figure 38(ii) and (iii) above, we get: 

 A B
A B

3
3 0

4 4

T L T L
T T

GJ GJ
      (4) 

From Eqs. (1) and (4): 

 o o
B A

3
,

4 4

T T
T T    

so maximum torque is carried by the segment AC of the shaft, and is given by: 

o

o
max 3 3

3
16

124

T

T

d d


 

 
 
 

   

Reference: Chapter 2 
 

51. A frame of two arms of equal length L is shown in Figure 39. The flexural rigidity of each arm of the frame 
is EI. The vertical deflection at the point of application of load P is: 
 

 
 

Figure 39 Question 51. 
 

(a) 
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Answer: (b) 
Explanation: Total strain energy due to bending of the frame is: 

2

0

2
2

L
xM

U
EI

   where xM Px  

2 2 3
2

0

d
3

L
P P L

U x x
EI EI

 
    

 
  

By Castigliano’s second theorem, 
32

3

U PL

P EI



 


 

Reference: Chapter 10 


