
Supplement - Primitive Structural Operators 1

MPL’s Primitive Structural Operators

In order to analyze and manipulate a mathematical expression, we must
access its operators and operands. MPL uses three primitive operators to
perform these tasks.

Definition 1 The operator MPL

Kind(u)

is defined by the following rules:

1. If u is an atomic expression, Kind(u) returns the type of expression
(e.g., integer, real, or symbol).

2. If u is a compound expression, Kind(u) returns the operator at the
root of the expression tree.

Example 1

Kind(x) → symbol,
Kind(3) → integer,

Kind(2.1) → real,
Kind(π) → symbol,

Kind(m ∗ x + b) → +,

Kind((a + b) ∗ sin(x ∧ 2)) → ∗,
Kind((a/b) → ∗,
Kind(2/3) → fraction,

Kind(sin(x)) → sin,

Kind(a = b) → =,

Kind({a, b, c, d}) → set,

Kind(x and y) → and,

Kind(x − x + 2) → integer.

In the last example, the operand is simplified by automatic simplification
to the integer 2.

Definition 2 If u is a compound expression, the MPL operator

Number of operands(u)

Supplement - Primitive Structural Operators 2

returns the number of operands of the main operator of u. If u is not a
compound expression, then Number of operands returns the global symbol
Undefined.

Example 2

Number of operands(m ∗ x + b) → 2,

Number of operands(f(x, y)) → 2,

Number of operands({a, b, c, d}) → 4,

Number of operands(n!) → 1,

Number of operands(x) → Undefined.

In the last example, the input expression x is not a compound expression.

Definition 3 If u is a compound expression, the MPL operator

Operand(u, i)

returns the ith operand of u. If u is not a compound expression or u
does not have an ith operand, then Operand returns the global symbol
Undefined.

Example 3

Operand(m ∗ x + b, 2) → b,

Operand(x ∧ 2, 1) → x,

Operand(Operand(m ∗ x + b, 1), 2) → x,

Operand({a, b, c, d}, 2) → b,

Operand(x − x, 1) → Undefined,

Operand(2/(−3), 2) → 3.

The last two examples are based on the simplified form of the expression.
Keep in mind, because automatic simplification in a computer algebra

system may apply the commutative law to reorder the operands in a sum
or product, the Operand operator may obtain an unexpected result. For
example, if b + a is reordered to a + b, we obtain

Operand(b + a, 2) → b.

The operators Kind , Number of operands , and Operand are the three
basic operations that are used to analyze and manipulate mathematical
expressions, and most computer algebra systems have versions of these
operators (see Figure 1).

Supplement - Primitive Structural Operators 3

MPL Maple Mathematica MuPAD

Kind(u) whattype(u) Head(u) type(u)

and and
op(0,u) op(u,0)

for function for undefined
names function names

Operand(u, i) op(i,u) Part[u,i] op(u,i)

and Numerator[u]

and Denominator[u]

for fractions
Number of operands(u) nops(u) Length[u] nops(u)

Construct(f, L) see Figure 2 Apply[f,L] see Figure 3

Figure 1. The primitive MPL structural operators in Maple, Mathematica, and
MuPAD. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

Construction of Expressions
In some instances, we need to construct an expression with a given operator
and list of operands. The MPL operator Construct is used for this purpose.

Definition 4 Let f be an operator (+, ∗, =, etc.) or a symbol, and let
L = [a, b, . . . , c] be a list of expressions. The MPL operator

Construct(f, L)

returns an expression with main operator f and operands a, b, . . . , c.

Example 4

Construct(” + ”, [a, b, c]) → a + b + c,

Construct(” ∗ ”, [a + b, c + d, e + f]) → (a + b) ∗ (c + d) ∗ (e + f),
Construct(g, [a, b, c]) → g(a, b, c),

While Mathematica has an operator that constructs expressions (see
Figure 1), Maple and MuPAD do not. However, in both of these languages,
the operation can be simulated with a procedure (see Figures 2 and 3).

Supplement - Primitive Structural Operators 4

Construct := proc(f,L)

local g,s;

if f = ‘!‘ then RETURN(op(L)!);

elif member(f,{‘and‘,‘or‘}) then RETURN(convert(L,f))

elif f = ‘not‘ then RETURN(not op(L))

elif f = set then RETURN({op(L)})

elif f = list then RETURN(L)

else s := subsop(0=f,g(op(L))); RETURN(eval(s))

fi

end:

Figure 2. A Maple procedure to implement MPL’s Construct operator. (Imple-
mentation: Maple (txt).)

Construct := proc(f,L)

begin

if f = _divide then return(op(L,1)/op(L,2))

elif f = _subtract of f = _negate then return(op(L,1)-op(L,2))

elif f = DOM_SET then return({op(L)})

elif f = DOM_LIST then return(L)

else return(f(op(L)))

end_if

end_proc:

Figure 3. A MuPAD procedure to implement MPL’s Construct operator. (Im-
plementation: MuPAD (txt).)

Return to Chapter 1, page 8

	Supplement - Primitive Structural Operators

