Supplement - Functions and Procedures 1

MPL Functions and Procedures

Functions

In ordinary mathematical discourse, the statement, “let f(z) = 2% + 4,”
defines a computational scheme and does not perform a computation. A
computation occurs when the function is invoked with a statement such as
f(2) — 8. In MPL, a function definition is used to mimic this operation.
In MPL, a function definition has the form
Functi
flar, ... @) unction U,
where f is the function name, x1, ..., x; is a sequence of symbols called the
formal parameters, and u is a mathematical expression. As with ordinary
mathematical notation, a function is invoked with an expression of the form

flay,...,ar), (1)

where a1, ..., a; is a sequence of mathematical expressions called the actual
parameters. When this expression is evaluated, each a; is evaluated and
substituted for the corresponding x; in u, and then w is evaluated, and the
resulting expression is returned as the evaluated form of (1).

Example 1 Consider the function definition

f(x)

The function is invoked with an expression such as f(2). When this state-
ment is evaluated, the actual parameter 2 replaces formal parameter x in
22 + 4, and f(2) — 8.

function

z? + 4.

Example 2 Consider the function definition

function

T(y,xz) := Derwative(y,z)+y.

The function is invoked with an expression such as T'(sin(¢) +t2, t). When
this statement is evaluated, the actual parameters sin(t) + t? and t are
substituted for the formal parameters y and =, and we obtain

T(sin(t) +t2, t) — cos(t) + 2t + sin(t) + 2.

In Figure 1 we give function definitions in Maple, Mathematica, and
MuPAD that implement the MPL definitions in Examples 1 and 2.

Supplement - Functions and Procedures 2

f = x => x"2+4;
T := (y,x) -> diff(y,x)+y;

(a) Maple.

flx_] :=x"2+ 4
Tly_, x_.1 :=Dly, x] +y

(b) Mathematica.

f = x -> x72+4;

—

= (y,x) —> diff(y,x)+y;

(c) MuPAD.

Figure 1. Function definitions in Maple, Mathematica, and MuPAD that cor-
respond to the MPL definitions in Examples 1 and 2. (Implementation: Maple
(mws), Mathematica (nb), MuPAD (mnb).)

Procedure Definitions

MPL procedures extend the function concept to mathematical operators
that are defined by a sequence of statements. The general form of a proce-
dure is given in Figure 2. The first line of the procedure gives the procedure
name and a sequence of formal parameters. The Input section contains
each of the formal parameters z; along with a brief description of the type
of expression that replaces it when the procedure is invoked. MPL proce-
dures always return a mathematical expression as output, and the Output
section contains a brief description of this expression.

The Local Variables section contains a sequence of local variables that
are known and used only by the procedure. The formal parameters and
the local variables make up the local environment of a procedure. In a real
CAS, each time a procedure is invoked, the variables in this environment are
given storage locations in the computer’s memory, and when the procedure
terminates, these locations are released back to the system.

The statements between the delimiters Begin and End represent the
body or the executable statements of the procedure. Each statement S; is
either a mathematical expression, an assignment statement, or a decision

Supplement - Functions and Procedures 3

Procedure P(z1,...,71);
Input
1 : description of input to x1;

x; : description of input to x;;
Output

description of output;
Local Variables

Viy...,Um;
Begin

S1;

Sa;

Sn— 1
S,
End

Figure 2. The general form of an MPL procedure.

or iteration structure both of which are defined later in this section.

A procedure is invoked like a function with an expression of the form (1).
When the procedure is invoked, each actual parameter a; is evaluated and
then substituted for the corresponding formal parameter x;, after which
each statement S; in the body is evaluated. In most cases, at least one of
the S; includes a return statement that has the form

Return(u),

u is a mathematical expression. When this statement is encountered, three
actions occur: first, the procedure immediately terminates; second, the
evaluated form of u is returned as the evaluated form of (1); and finally,
control is transferred back to the statement that invoked the procedure. If
a Return statement is not included, the actions are similar, but now the
evaluated form of the last statement S, is returned by the procedure. We
always include a Return statement to emphasize what is returned by the
procedure.

Example 3 We illustrate this concept by defining a procedure that obtains
the equation of a tangent line to a function f(x) at the point = a. Recall
that the expression for the tangent line is given by

D 0)x ~a) + f0))

Supplement - Functions and Procedures 4

Procedure Tangent_line(f,z,a);
Input
f : an algebraic expression (formula for a mathematical function);
z : a symbol (independent variable);
a : an algebraic expression (point of tangency);
Output
an algebraic expression that is the formula for the tangent line;
Local Variables
deriv, m, line;
Begin
1 deriv := Derivative(f, x);
2 m := Substitute(deriv, x = a);
3 line := Algebraic_expand(m * (x — a) + Substitute(f,z = a));
4 Return(line)
End

Figure 3. An MPL procedure that obtains the formula for a tangent line. (Im-
plementation: Maple (txt), Mathematica (txt), MuPAD (txt).)

The procedure definition in Figure 3 is an algorithmic view of what is done
to obtain this expression in expanded form. We invoke the procedure with
an expression such as

Tangent_line(1/z, z,3). (3)

When this expression is evaluated, the three actual parameters 1/z, z, and
3 are substituted for the corresponding formal parameters f, z, and a, and
then the statements in the procedure are evaluated:

deriv := Derivative(1/z, z) — —1/22,

m = Substitute(—1/2%, z = 3) — —1/9,

line := Algebraic_expand((—1/9) * (z — 3) + Substitute(1/z, z = 3))
— (=1/9)z+2/3.

Therefore
Tangent_line(1/z,2,3) — (—1/9) =+ 2/3.

When we invoked the procedure in Expression (3) for clarity we inten-
tionally chose names for mathematical symbols that were different from the
formal parameter names of the procedure. There is no reason, however, to
restrict the actual parameters in this way. For example, the procedure can
also be invoked with

Tangent_line(1/x,2,3) — (—1/9) z + 2/3. (4)

Supplement - Functions and Procedures 5

Keep in mind, however, that the actual parameter x in Statement (4) and
the formal parameter x in the procedure declaration

Procedure Tangent_line(f,z,a) (5)

are different symbols even though they have the same name. When State-
ment (4) is evaluated, each actual parameter is substituted for the corre-
sponding formal parameter which means that f is replaced by 1/, the
formal parameter x in (5) by the actual parameter z in (4), and a by 3.
Therefore, the differentiation at line 1 is

Derivative(1/z,) — —1/x2,

where the x that appears here is the one in (4). Similar comments apply
to the other statements in the procedure.

Maple, Mathematica, and MuPAD provide procedures that operate
as described above. In Figures 4 and 5 we give implementations of
Tangent_line in these languages.

Global Symbols

A symbol that appears in a function or a procedure that is not a formal
parameter or a local variable is called a global symbol. Global symbols,
which are accessible to both the interactive mode and other functions and
procedures, provide another way to pass data to and from a procedure
without using the formal parameters or a Relurn statement.

For a simple example, consider a modification of the Tangent_line pro-
cedure in which the variable deriv has been removed from the local section
and therefore is considered global. In this case, after evaluating Statement
(3) the global variable deriv has the value —1/2% which can now be used
by other functions, procedures, or the interactive mode.

Local Variables and Formal Parameters

In order to promote a programming style that works for all languages we
adopt the following conventions for the use of local variables and formal
parameters in a procedure:

e In MPL procedures, an unassigned local variable cannot appear as
a symbol in a mathematical expression. In other words, in MPL
procedures local variables can only act as programming variables and
must be assigned before they appear in a mathematical expression. In
situations where a procedure requires a local mathematical symbol,
we either pass the symbol through the parameter list or use a global
symbol.

Supplement - Functions and Procedures 6

Tangent_line := proc(f,x,a)

#Input
f: an algebraic expression (formula for a mathematical function)
x: a symbol (independent variable)
a: an algebraic expression (point of tangency)
#0utput
an algebraic expression that is the formula for the tangent line
local
deriv,m,line;
deriv := diff(f,x);

m := subs(x=a,deriv);
line := expand(m*(x-a)+subs(x=a,f));
RETURN(1line)
end:

(a) Maple.
TangentLine[f_,x_,a_] := Module[
(*Input

f: an algebraic expression (formula for a mathematical function)
x: a symbol (independent variable)
a: an algebraic expression (point of tangency)
Output
an algebraic expression that is the formula for the tangent line
Localx)
{deriv,m,line},
deriv = D[f,x];
m = ReplaceAll[deriv,x->a];
line = Expand[m*(x-a)+ ReplaceAll[f,x->al];
Return[line]

]

(b) Mathematica.

Figure 4. Implementations of the MPL procedure in Figure 3 in Maple and
Mathematica. (Implementation: Maple (txt), Mathematica (txt).)

e Formal parameters in MPL procedures are used only to transmit data
imto a procedure and not as local variables or to return data from
a procedure. In conventional programming languages, a procedure’s

Supplement - Functions and Procedures

Tangent_line := proc(f,x,a)
/*
Input
f: an algebraic expression (formula for a mathematical function)
x: a symbol (independent variable)
a: an algebraic expression (point of tangency)
Output
an algebraic expression that is the formula for the tangent line
*/
local
deriv,m,line;
begin
deriv := diff(f,x);
m := subs(deriv,x=a);
line := expand(m*(x-a)+subs(f,x=a));
return(line)
end_proc:

Figure 5. A MuPAD implementation of the MPL procedure in Figure 3. (Im-

plementation: MuPAD (txt).)

formal parameters can be used both to transmit data to and from a
procedure and as local variables. The situation with CAS languages is
more involved, however, because the actual parameters in a procedure
call can be mathematical expressions as well as variables. Because of
this, the language mechanism that is used to bind the formal param-
eters with the actual parameters can be rather involved and can vary
from system to system. For this reason, the use of formal parameters
for anything but the transmission of data into a procedure is system
dependent. When we need to return more than one expression from

a procedure, we return a list of expressions.

Return to Chapter 1, page 3

	Supplement - Functions and Procedures

