
Supplement - Derivative Operator 1

MPL’s Derivative Operator

Let u be an algebraic expression and let x be a symbol. MPL’s operator
Derivative(u, x), which evaluates the derivative of u with respect to x, is
defined by the following transformation rules:

DERIV-1. If u = x, then Derivative(u, x) → 1.

DERIV-2. If u = vw, then

Derivative(u, x) →
w ∗ vw−1 ∗ Derivative(v, x) +Derivative(w, x) ∗ vw ∗ ln(v).

This rule applies to expressions that are powers and accounts for expres-
sions where either v or w may depend on x. (The rule is derived using
logarithmic differentiation.) Since the Derivative operator appears on the
right side of the rule, DERIV-2 is recursive. When w is free of x, the rule
reduces (with automatic simplification) to the familiar power rule

d(vw)
d x

= w · vw−1 d(v)
d x

.

DERIV-3. Suppose u is a sum and let v = Operand(u, 1) and w = u − v.
Then

Derivative(u, x) → Derivative(v, x) +Derivative(w, x).

DERIV-4. Suppose u is a product and let v = Operand(u, 1) and w =
u/v. Then

Derivative(u, x) → Derivative(v, x) ∗ w + v ∗ Derivative(w, x).

Rules DERIV-3 and DERIV-4 are the sum and product differentiation
rules. Again, the rules are recursive because the right side of each rule
refers to the Derivative operator. Notice that we obtain the derivative of
a sum by differentiating both the first operand and the remaining part of
the sum, which is obtained by subtracting the first operand from u with
automatic simplification. A similar approach is used for a product.

A typical rule for a known function looks like the following:



Supplement - Derivative Operator 2

DERIV-5. If u = sin(v), thenDerivative(u, x) → cos(v)∗Derivative(v, x).

Again, the chain rule implies the rule is recursive.

DERIV-6. If Free of(u, x) = true, then Derivative(u, x) → 0.

This rule applies to integers, fractions, symbols, and compound expressions
(such as f(a) or n!) that are free of the differentiation variable x. Notice
that powers, sums, and products are not checked by this rule because they
are handled by one of the earlier rules DERIV-2, DERIV-3, or DERIV-
4. For example, if b and e are symbols (�= x), then

Derivative(be, x) → 0

is obtained by first applying DERIV-2, which applies DERIV-6 (recur-
sively) to both b and e.

We have placed DERIV-6 at this point in the rule sequence to avoid
redundant calls on the Free of operator. The reason for this has to do with
the recursive nature of Free of. If DERIV-6 were at the beginning of the
rule sequence, then to compute the derivative (with respect to x) of

u = (1 + a)2 + x2,

the algorithm would first check if u were free of x, which involves the
comparison of each complete sub-expression of u to x until the symbol x
is found. Since this step would return false, we would next apply the sum
rule which obtains the derivative in terms of the derivatives of the two
operands (1 + a)2 and x2. To find the derivative of (1 + a)2, we would
check (for the second time) if this expression were free of x. By placing
the Free of operation later in the rule sequence, we avoid this redundant
calculation.

The final transformation rule applies to any expression that is not cov-
ered by the earlier rules:

DERIV-7. Derivative(u, x) → ”Derivative”(u, x).

In other words, if none of the earlier rules apply to u, the expression is re-
turned in the unevaluated form Derivative(u, x ). The Derivative operator
on the right is quoted to prevent a recursive evaluation of the operator be-
cause, without the quotes, the transformation leads to an infinite sequence
of recursions. By including this rule, we obtain a representation for the
derivative of expressions that include undefined functions such as

Derivative(f(x) ∗ g(x), x) → Derivative(f(x), x) ∗ g(x)
+f(x) ∗ Derivative(g(x), x),

where the derivatives of f(x) and g(x) remain in unevaluated form.



Supplement - Derivative Operator 3

Notice that the differentiation quotient rule is not included in our rule
sequence because we assume that automatic simplification transforms quo-
tients to products or powers.

The DERIV rules are an example of a transformation rule sequence.
When describing an algorithm in this way, we assume that a rule is checked
only when all earlier rules do not apply. This approach simplifies the pre-
sentation because conditions that are handled by earlier rules need not be
repeated (in a negative sense) in a later rule.

Most computer algebra systems have an operator that is similar to
MPL’s Derivative operator:

MPL Maple Mathematica MuPAD
Derivative(u, x) diff(u, x) D[u, x] diff(u, x)

(Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

Return to Chapter 1, page 14


	Supplement - Derivative Operator

