
Supplement - Automatic Simplification 1

Automatic Simplification

The term automatic (or default) simplification refers to the mathematical
simplification rules that are applied to an expression during the evaluation
process. In computer algebra systems, this usually involves the “obvious”
simplification rules from algebra and trigonometry that remove extraneous
symbols from an expression and transform it to a standard form.
The MPL dialogue in Figure 1 illustrates some of these obvious sim-

plifications. Example <1> shows a simplification that involves the sum
of rational numbers. Example <2> shows that automatic simplification
combines numerical coefficients of like terms. The next example <3> illus-
trates a similar simplification in which integer exponents of the common
base x are combined. Example <4> illustrates some simplification rules
that involve the integers 0 and 1. Notice that after evaluation, the x3 term
appears at the right end of the expression. This reordering, which is an
application of the commutative law of addition, serves to put the result in
a more readable form and, in some cases, contributes to the simplification
process1. The next example <5> illustrates this point. To simplify this
expression, the term 3 ∗ y ∗ x is first reordered (using the commutative law
for multiplication) to 3 ∗ x ∗ y after which the coefficients of the two like
terms are combined. Examples <6>, <7>, and <8> illustrate automatic
simplification rules that involve known functions, while Examples<9> and
<10> illustrate simplification rules that involve reserved symbols.
Examples <11> and <12> illustrate the automatic simplification rules

that are applied in some systems to logical expressions as data objects2. In
Example <12>, P and Q are unassigned identifiers and the simplification
follows from the general logical rule P and P → P.
The examples in Figure 1 are roughly similar to what happens in a

real computer algebra system. However, since there is no consensus about
which simplification rules should be included in automatic simplification,
the process can vary somewhat from system to system.
Figure 2 shows an interactive dialogue with the Macsyma system that

shows what happens when automatic simplification is suppressed. At the
prompt (c1) we assign an expression to u and at (c2) turn off the au-
tomatic simplifier by assigning the value false to the variable simp. At
(c3) we differentiate u and obtain an expression that is so involved it is

1The reordering process in Mathematica and MuPAD is similar to what is described
here. The reordering process in Maple is handled in a different way (see page 71 in
Section 3.1).

2Maple obtains <11> and <12>. Mathematica obtains <11>, but not <12>. Mu-
PAD obtains <12>, but not <11>.



Supplement - Automatic Simplification 2

<1> 2 + 3/4 + 5/6;

→ 43

12
<2> x + y + 2 ∗ x;

→ 3x + y

<3> x ∗ y ∗ x2;
→ x3y

<4> 1 ∗ x3 + a ∗ x0 + b ∗ x1 + 0 ∗ x2;

→ a + b x + x3

<5> x ∗ y + 3 ∗ y ∗ x;
→ 4x y

<6> sin(π/2);
→ 1

<7> ln(e2);
→ 2

<8> arctan(1);
→ π/4

<9> ı2;
→ − 1

<10> e(−ı∗π);
→ − 1

<11> 0 ≤ 1 and 1 ≤ 2;
→ true

<12> P and P and Q;
→ P and Q

Figure 1. An MPL dialogue that shows some examples of automatic simplifica-
tion. (Implementation: Maple (mws), Mathematica (nb), MuPAD (mnb).)

difficult to interpret3. At (c4) we turn the automatic simplifier back on
and at (c5) obtain a much more reasonable form for the derivative.
In MPL (as in a CAS), all expressions in dialogues and computer pro-

grams operate in the context of automatic simplification. This means:

• All input operands to mathematical operators are automatically sim-
plified before the operators are applied.

• The result obtained by evaluating an expression is in automatically
simplified form.

3Notice that Macsyma uses logarithmic differentiation to differentiate ex2
. Logarith-

mic differentiation provides a way to differentiate general powers of the form f(x)g(x).



Supplement - Automatic Simplification 3

(c1) u : a*x + x*exp(x∧2);

(d1) x ex2
+ a x

(c2) simp : false;

(d2) false

(c3) diff(u,x);

(d3) 1 a+ 0 x+ ex2 (
e−1x2 0 + log(e) (2x)

)
x+ 1 ex2

(c4) simp : true;

(d4) true

(c5) diff(u,x);

(d5) 2 x2 ex2
+ ex2 + a

Figure 2. An interactive dialogue with the Macsyma system that shows what
happens when automatic simplification is suppressed.

Since automatic simplification is so central to the programming process,
it is a good idea to understand which simplification rules are applied by
the process and which are not. The algebraic component of the automatic
simplification process is described in Chapter 3.

Return to Chapter 1, page 5


	Supplement - Automatic Simplification

