Supplement - Structure-based Operators 1

MPL’s Structure-based Operators

We describe below two MPL operators for which the operations are based
only on the simplified structure of an expression. First, we introduce the
terminology that is used in the definitions of these operators.

Complete Sub-Expressions

Definition 1 Let u be an automatically simplified expression. A com-
plete sub-expression of u is either the expression w itself or an operand
of some operator in u.

In terms of expression trees, the complete sub-expressions of u are either
the expression tree for u or one of its sub-trees.

Example 1 Consider the expression
sin(a) * (L+b+cA2), (1)

which has the expression tree shown Figure 1. This expression contains the
following complete sub-expressions:

sin(a) * (L+b+cA2), sin(a), a,
1+b+cA2, 1, b, cN2, ¢, 2.

sin +

Figure 1. An expression tree for sin(a) * (1+ b+ cA 2).

Supplement - Structure-based Operators 2

|| MPL | Maple | Mathematica | MuPAD ||
Free_of(u,t) not (has(u,t)) FreeQ[u,x] not (has(u,t))
Substitute(u,t = r) subs (t=r,u) ReplaceAll[u,t->r] | subs(u,t=r)
or
u/.t->r

Figure 2. Structural operators in Maple, Mathematica, and MuPAD that cor-
respond most closely to MPL’s structural operators. (Implementation: Maple
(mws), Mathematica (nb), MuPAD (mnb).)

There are some parts of an expression that are sub-expressions in a mathe-
matical sense but are not complete sub-expressions. For example in Expres-
sion (1), 14 b is not a complete sub-expression since it is not the operand
of an operator.

The MPL Free_of Operator

The MPL Free_of operator determines if an expression u is free of an
expression ¢ (or does not contain t).

Definition 2 Let w and t (for target) be mathematical expressions. The
MPL operator
Free_of (u,t)

returns false when t is identical to some complete sub-expression of u and
otherwise returns true.

Example 2
Free_of(a+b, b) — false,
Free_of (a+b, ¢) — true,
Free_of ((a+b)xc, a+b) — false,
Free_of (sin(z) + 2 x z, sin(z)) — false,
Free_of ((a+b+c¢)xd, a+b) — true, (2)
Free_of (y +2xx —vy)/x,) — true, (3)
Free_of (z xy)?, z*y) — true. (4)

In Statement (2), a+b is not a complete sub-expression of (a+b+c¢)*d and
so the operator returns true. In Statement (3), automatic simplification
simplifies the first operand to 2 and so the expression no longer contains an
x. In a similar way, in Statement (4) automatic simplification transforms
(x *)2 to 2% * y? which gives the output true.

An operator similar to Free_of is available in most computer algebra
systems (see Figure 2).

Supplement - Structure-based Operators 3

<1> w:=a+b
— u:=a-+b

<2> w:= Substitute(u, b= x);
— vi=a-+x
<3> ufv;

a+b
a+x

—

<4> Substitute(l/a + a, a = z);

o1,

x

<5> Substitute((a+b)*+ 1, a+b=x);

— 2?41
<6> Substitute(a+b+c¢, a+b=x);

— a+b+c

<7> Substitute(a+b+ ¢, a =z —b);

— xr+c

Figure 3. An MPL dialogue that illustrates the use of the Substitute operator.

The MPL Substitute Operator

Substitution is one of the essential operations used to manipulate and sim-
plify mathematical expressions. The MPL Substitute operator performs a
particularly simple form of substitution, called structural substitution, that
is based solely on the tree structure of an expression.

Definition 3 Let u, t, and r be mathematical expressions. The structural
substitution operator has the form

Substitute(u, t =r).

It forms a new expression with each occurrence of the target expression
t in u replaced by the replacement expression r. The substitution occurs
whenever t is structurally identical to a complete sub-expression of u.

Keep in mind that Substitute does not change u, but instead creates an
entirely new expression. Some examples of the use of the operator are
given in the MPL dialogue in Figure 3.

The statements at <1>, <2>, and <3> illustrate that u is not changed
by the substitution operation. In <6>, the substitution does not occur

Supplement - Structure-based Operators 4

since a + b is not a complete sub-expression of a + b+ ¢. However, in <7>,
we obtain the substitution intended in <6> by modifying the form of the
substitution.

Most computer algebra systems have a form of the Substitute operator
(see Figure2).

Return to Chapter 1, page 10

	Supplement - Structrure-based Operators

