

School of Engineering & Technology

School of Pharmacy

UNIT TEST-II

(2013-14)

Subject: E.M.I

Class: S.E.EXTC (SEM-III)

Marks:20

Time:01Hr

Date: /10/2013

Test-II

Q.1 Attempt following(6X2=12)

a. What is the role of time base generator in CRO.

b.State different modes of operation of DSO.

c.Explain operating principle of Q-Meter.

d.Define total harmonic distortion factor.

e. What are the applications of spectrum analyzer.

f.Explain one application of Lissajous pattern.

Q.2 Attempt any two(2x4 =08)

a.Draw & explain Wheatstone bridge for unknown resistance measurment.

b. Explain the block diagram of CRO.

c.Describe fundamental suppression Harmonic distortion analyzer (THD).

(2013-14)

ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

School of Engineering & Technology	
Subject: Analoge electronics-1	Date: Opp 12
Marks: 20, Class: SE (1/1)	Duration: 1 Hr/s
Class: SE (T/L)	Branch: EXTC
Instructions:	Test-I

Q.1 Solve any four.

(4x3M=12Marks)

- 1. What is the need of biasing of a transistor?
- 2. What is meant by Q-point?
- 3. What is thermal runway? How it can be avoided?
- 4. Define stability factor. What is its significance?
- 5. Draw hybrid Π-model (High frequency model) for a BJT.
- 6. State Miller's theorem.

Q.2 Any two.

(4x2=8Marks)

- 1. Explain graphical determination of h-parameters.
- 2. Design a fixed bias circuit using silicon transistor having h_{fe} =100, Vcc=12V and dc bias conditions are V_{CE} =6V, Ic=3mA, V_{BE} = 0.7V.
- 3. Find the voltage gain (Av) by using exact analysis of CE amplifier.

2013-14) ANJUMAN-I-ISLAM'S KALSEKAR TECHNICAL CAMPUS, NEW PANVEL

School of Engineering & Technology

Subject: DIGITAL ELECTRONICS

Marks: 20

Class: SECOND YEAR (III

Test -11

001.13 Date:

Duration: 1 Hr/s

Branch: EXTC

Instructions: --

Q.1 Attempt any FOUR out of FIVE.

- 1. Convert J-K flip-flop to J-K flip-flop.
- 2. Implement Full Adder using 3:8 Decoder circuit.
- 3) Implement the following Boolean function using Multiplexer. $F(A, B, C, D) = \sum m(0, 2, 3, 5, 7, 9, 12, 13, 15)$
- 4) Draw the circuit diagram of J-K flip-flop using NAND Gate.
- 5) What is Glitch and Explain with suitable example?
- Q.2 Attempt any one of the following.

8 Marks

12 Marks

- 1. Design mod-5 synchronous counter using J-K flip-flop.
- 2. Design a sequence detector circuit to detect 1101 non-overlapping sequence.

UNIT TEST II

OCT 2013 Marks - 20

ELECTRICAL / EXTC

Applied Mathematics III

Q. 1 Solve any two problems.

(08)

- i) Find the Fourier series for $f(x) = 1 x^2$ in [-1 1]
- ii) Find Half range sine series for $f(x) = x^2$ in $[0 \pi]$
- iii) Find the angle between two surfaces $x^2 + y^2 + az^2 = 6$ and $z = 4 y^2 + bxy$ at point (1, 1, -2).
- iv) If $\vec{F} = (x + 2y + az)i + (bx-3y-z)j + (4x + cy + 2z)k$

Prove that F is solenoidal and find a, b, c if F is Irrotational.

Q. 2 Solve any two problems.

(12)

- i) Find the directional derivative of $\emptyset = x y z$ at point (2,1,-1) in the direction of normal to the surface $x^2y + y^2x + z^2y = 3$ at (1,1,1)
- ii) Find the Fourier Series for $f(x) = \frac{1}{4} (\pi x)^2$ in $[0 \pi]$
- iii) Find the Fourier Series for $f(x) = 2x x^2$ in [0 3]