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Figure 1 shows a T network.
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For T network, the value of input impedance when it is terminated by characteristic impedance z0, is given by
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Hence characteristic impedance for symmetrical T section is given by,
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Characteristic impedance can also be expressed in terms of open circuit impedance zOC and short-circuit
impedance zSC.

Open circuit impedance zOC = 1
22

z
z�

Short circuit impedance zSC = 

1
2

1

1
2

2
2

2

z
zz

z
z

�
�

= 1 1 2

1 22 2

z z z

z z
�

�

= 
2
1 1 2

1 2

4

2 4

z z z

z z

�
�

zOC zSC = 
2

1 2 1 1 2

1 2

2 4

2 2 4

z z z z z

z z

� �� �� �
� � � �� � �� �

= 
2
1

1 24

z
z z�  = 2

OTz

zOT = OC SCz z

������������	�������

Fig. 2



Filters 3

Applying KVL to mesh 1,
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Figure 3 shows π-netwerk.

Fig. 3
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For p network, the value of input impedance when it is terminated by impedance z0, is given by
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Hence characteristic impedance of a symmetrical p network is given by

z0p = 1 2

1

2

1 4

z z
z

z
�

= 1 2

2
1

1 2 4

z z

z
z z �

But z0T = 
2
1

1 24

z
z z�

z0p = 1 2

0T

z z

z

Characteristic impedance can also be expressed in terms of open circuit impedance zOC and short circuit
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The propagation constant of a symmetrical p network is same as that of a symmetrical T network.
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A filter transmits or passes desired range of frequencies without loss and attenuates all undesired frequencies.
The propagation constant

g = a + jb
where a is attenuation constant and b is the phase constant. We know that
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Both the above equations must be satisfied simultaneously by a and b. Two conditions may arise

(a) sinh 
2

a
= 0 i.e. a = 0 when b ≠ 0 and sin 

2

b
 = 1

24

z

z
 as cosh 

2

a
 = 1

This signifies the region of zero attenuation or pass band which is limited by the upper limit of sine terms.

sin 
2

b
= 1

–1 < 1

24

z

z
 < 0

The phase angle in the pass band

b = 2 sin –1 1

24

z

z

(b)  cos 
2

b
= 0

sin 
2

b
= ± 1

cosh 
2

a
= 1

24

z

z

This signifies a stop band since a ≠ 0

a = 2 cosh–1 1

24

z

z

1

24

z

z
< – 1

	����������������

In constant k filters, z1 and z2 are opposite type of reactances.
z1z2 = k2

where k is a constant independent of frequency. There are two types of constant k type filters
(i) constant k low pass filter

(ii) constant k high pass filter

	�������������������������

Figure 4 shows constant k low pass filter.

Fig. 4
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The passband starts at f = 0 and continues upto fC, the cutoff frequency. All the frequencies above.

Fig. 5



Filters 9

cutoff frequency fC are in the attenuation or stop band. Thus, the network is called a low-pass filter.
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The variation of a and b is plotted in the Fig. 6.

Fig. 6
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The attenuation a is zero throughout the pass band but increases gradually from the cutoff frequency. The
phase shift b is zero at zero frequency and increases gradually through the pass band, reaches p at cutoff
frequency fC. It remains at p for all frequencies beyond fC.
Determination of characteristic impedance:
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The plots of characteristic impedance are shown in Fig. 7.

Fig. 7

z0T is real when f < fC i.e. in the pass band. If f = fC, z0T = 0 and for f > fC, z0T is imaginary in the attenuation
band, rising to infinite reactance at infinite frequency.

z0p is real when f < fC. If f = fC, z0p is finite and for f > fC, z0p is imaginary.
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A low pass filter can be designed from the specifications of cutoff frequency and load.
At cutoff frequency fC,
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Constant k high pass filter is obtained by changing the positions of series and shunt arms of the constant k low
pass filter. Figure 8 shows a constant k high pass filter.
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The reactances z1 and z2 are shown in Fig. 9.

Fig. 9

As seen from Fig. 9 the filter passes all the frequency beyond fC. All frequencies below the cutoff frequency
lie in attenuation or stop band. Hence the network is called a high pass filter.
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Cf
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The variation of a and b is plotted in the Fig. 10.

Fig. 10

The phase constant b remains at constant value p in the stop band i.e. in 0 < f < fC. The phase constant b
increases from p to – p at fC and reaches 0 value gradually as f increases in the pass band. The attenuation
constant a is infinity at zero frequency and gradually to zero and remains at zero troughout the passband i.e.
in fC < f < ∞.
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The characteristic impedance will be given by
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The plots of characteristic impedances are shown in Fig. 11.

Fig. 11
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A high pass filter can be designed similar to the low pass filter by choosing a resistive load R equal to the
constant k such that
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A band pass filter attenuates all frequencies below a lower
cutoff frequency and above an upper cutoff frequency. It
passes a band of frequencies without attenuation. A band
pass filter is obtained by using a low pass filter followed
by a high pass filter.

Figure 12 shows a band pass filter. The series arm is a
series resonant circuit comprising L1 and C1 while its shunt
arm is formed by a parallel resonant circuit L2 and C2. The
resonant frequency of series arm and shunt arm are made
equal.

Fig. 12
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For constant k type filter, at cutoff frequency,
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1 1
1

1
j L

j C
w

w
� �

�� �� �
= jw2L1 – 

2 1

1

j Cw

1 – w 2L1C1 = 1

2

w
w

 (w 2L1C1–1)



16 Electrical Networks
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Thus resonant frequency is the geometric mean of the cutoff frequencies. The variation of reactances with
respect to frequency is shown in Fig. 13

Fig. 13

Design: If the filter is terminated in a load resistance R = k, then at lower cutoff frequency
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A band stop filter attenuates a specified band of frequencies and permits all frequencies below and above this
band. A band stop filter is realized by connecting a low pass filter in parallel with a high pass filter.

Figure 14 shows a bandstop filter.
As in the band pass filter, the series and shunt arms are chosen to resonate at same frequency w 0.
For series arm,
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and  f0 = 1 2f f
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