

T-NETWORK

Figure 1 shows a *T* network.

Characteristic Impedance

For T network, the value of input impedance when it is terminated by characteristic impedance z_0 , is given by

$$
z_{\text{in}} = \frac{z_1}{2} + \frac{z_2 \left(\frac{z_1}{2} + z_0\right)}{\frac{z_1}{2} + z_2 + z_0}
$$

But $z_{\text{in}} = z_0$

$$
z_0 = \frac{z_1}{2} + \frac{2z_2\left(\frac{z_1}{2} + z_0\right)}{z_1 + 2z_2 + 2z_0}
$$

$$
= \frac{z_1}{2} + \frac{(z_1z_2 + 2z_2z_0)}{z_1 + 2z_2 + 2z_0}
$$

2 *Electrical Networks*

$$
= \frac{z_1^2 + 2z_1z_2 + 2z_1z_0 + 2z_1z_2 + 4z_0z_2}{2(z_1 + 2z_2 + 2z_0)}
$$

\n
$$
4z_0^2 = z_1^2 + 4z_1z_2
$$

\n
$$
z_0^2 = \frac{z_1^2}{4} + z_1z_2
$$

\n
$$
z_0 = \sqrt{\frac{z_1^2}{4} + z_1z_0}
$$

Hence characteristic impedance for symmetrical *T* section is given by,

$$
z_{OT} = \sqrt{\frac{z_1^2}{4} + z_1 z_0}
$$

 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{z_1}{z} + z$

Characteristic impedance can also be expressed in terms of open circuit impedance z_{OC} and short-circuit impedance z_{SC} .

Open circuit impedance

Short circuit impedance

$$
z_{SC} = \frac{z_1}{2} + \frac{\frac{z_1}{2} z_2}{\frac{z_1}{2} + z_2}
$$

\n
$$
= \frac{z_1}{2} + \frac{z_1 z_2}{z_1 + 2z_2}
$$

\n
$$
= \frac{z_1^2 + 4z_1 z_2}{2z_1 + 4z_2}
$$

\n
$$
z_{OC} z_{SC} = \left(\frac{z_1 + 2z_2}{2}\right) \left(\frac{z_1^2 + 4z_1 z_2}{2z_1 + 4z_2}\right)
$$

\n
$$
= \frac{z_1^2}{4} + z_1 z_2 = z_{OT}^2
$$

\n
$$
z_{OT} = \sqrt{z_{OC} z_{SC}}
$$

Propagation Constant

Fig. 2

Applying KVL to mesh 1,

Applying KVL to mesh 2,

$$
V_s = \left(\frac{z_1}{2} + z_2\right)I_1 - z_2I_2
$$

$$
0 = \left(\frac{z_1}{2} + z_2 + z_0\right)I_2 - z_2I_1
$$

$$
z_2I_1 = \left(\frac{z_1}{2} + z_2 + z_0\right)I_2
$$

$$
\left(\frac{2}{2} - \frac{1}{2}\right)
$$

$$
\frac{I_1}{I_2} = \frac{\left(\frac{z_1}{2} + z_2 + z_0\right)}{z_2} = e^{\gamma}
$$

$$
\frac{z_1}{2} + z_2 + z_0 = z_2 e^{\gamma}
$$

$$
z_0 = z_2(e^{\gamma} - 1) - \frac{z_1}{2}
$$

z

The characteristic impedance of *T* network is given by

1 2

$$
z_0 = \sqrt{\frac{z_1^2}{4} + z_1 z_2}
$$

$$
\sqrt{\frac{z_1^2}{4} + z_1 z_2} = z_2 (e^{\gamma} - 1) - \frac{z_1}{2}
$$

$$
\frac{z_1^2}{4} + z_1 z_2 = z_2^2 (e^{\gamma} - 1)^2 + \frac{z_1^2}{4} - z_1 z_2 (e^{\gamma} - 1)
$$

$$
z_2^2 (e^{\gamma} - 1)^2 - z_1 z_2 e^{\gamma} = 0
$$

$$
z_2 (e^{\gamma} - 1)^2 - z_1 z_2 e^{\gamma} = 0
$$

$$
(e^{\gamma} - 1)^2 = \frac{z_1}{z_2} e^{\gamma}
$$

$$
e^{2\gamma} - 2e^{\gamma} + 1 = \frac{z_1}{z_2 e^{-\gamma}}
$$

$$
e^{-\gamma} (e^{2\gamma} - 2e^{\gamma} + 1) = \frac{z_1}{z_2}
$$

$$
(e^{\gamma} + e^{-\gamma} - 2) = \frac{z_1}{z_2}
$$

$$
\frac{e^{\gamma} + e^{-\gamma} - 2}{2} = 1 + \frac{z_1}{2z_2}
$$

$$
\cosh \gamma = 1 + \frac{z_1}{2z_2}
$$
\n
$$
\sinh \gamma = \sqrt{\cosh^2 \gamma - 1}
$$
\n
$$
= \sqrt{\left(1 + \frac{z_1}{2z_2}\right)^2 - 1}
$$
\n
$$
= \sqrt{1 + \frac{z_1}{z_2} + \frac{z_1^2}{4z_2^2} - 1}
$$
\n
$$
= \sqrt{\frac{z_1}{z_2} + \left(\frac{z_1}{2z_2}\right)^2} = \frac{1}{z_2} \sqrt{z_1 z_2 + \frac{z_1^2}{4}} = \frac{z_{OT}}{z_2}
$$
\n
$$
\tanh \gamma = \frac{\sinh \gamma}{\cosh \gamma}
$$
\n
$$
= \frac{z_{OT}}{z_2 + \frac{z_1}{2}}
$$
\n
$$
z_{OT} = \sqrt{z_{OC} z_{SC}}
$$
\n
$$
z_{OC} = \frac{z_1}{2} + z_2
$$
\n
$$
\tanh \gamma = \sqrt{\frac{z_{SC}}{z_{OC}}}
$$

π NETWORK

Figure 3 shows π -netwerk.

Characteristic Impedance

For π network, the value of input impedance when it is terminated by impedance z_0 , is given by

$$
z_{\rm in} = \frac{2z_2 \left[z_1 + \frac{2z_2 z_0}{2z_2 + z_0} \right]}{z_1 + \frac{2z_2 z_0}{2z_2 + z_0} + 2z_2}
$$

But $z_{\text{in}} = z_0$

$$
z_0 = \frac{2z_2 \left[z_1 + \frac{2z_2 z_0}{2z_2 + z_0} \right]}{z_1 + \frac{2z_2 z_0}{2z_2 + z_0} + 2z_2}
$$

\n
$$
z_0 z_1 + \frac{2z_2 z_0^2}{2z_2 + z_0} + 2z_0 z_2 = \frac{2z_2 (2z_1 z_2 + z_0 z_1 + 2z_0 z_2)}{2z_2 + z_0}
$$

\n
$$
2z_0 z_1 z_2 + z_1 z_0^2 + 2z_0 z_2^2 + 4z_2 z_0^2 + 2z_2 z_0^2 = 4z_1 z_1^2 + 2z_0 z_1 z_2 + 4z_0 z_2^2
$$

\n
$$
z_1 z_0^2 + 4z_2 z_0^2 = 4z_1 z_2^2
$$

\n
$$
z_0^2 = \frac{4z_1 z_2}{z_1 + 4z_2}
$$

\n
$$
z_0 = \sqrt{\frac{z_1 z_2}{1 + 4z_2}}
$$

Hence characteristic impedance of a symmetrical π network is given by

$$
z_{0\pi} = \sqrt{\frac{z_1 z_2}{1 + 4\frac{z_1}{z_2}}} = \frac{z_1 z_2}{\sqrt{z_1 z_2 + \frac{z_1^2}{4}}}
$$

But

$$
z_{0T} = \sqrt{\frac{z_1^2}{4} + z_1 z_2}
$$

$$
z_{0\pi} = \frac{z_1 z_2}{z_{0T}}
$$

Characteristic impedance can also be expressed in terms of open circuit impedance z_{OC} and short circuit impedance z_{SC} .

Open circuit impedance

$$
2z_2 + z_1 + 2z_2
$$

$$
= \frac{2z_2(z_1 + 2z_2)}{z_1 + 4z_2}
$$

 $2z_1z$

 $2z_2(z_1+2z_2)$

 $\ddot{}$

 $z_2(z_1 + 2z)$

Short circuit impeance

$$
c_{SC} = \frac{2z_2 + z_1}{2z_2 + z_1}
$$

$$
z_{OC} z_{SC} = \frac{4z_1 z_2^2}{z_2 + z_1} = \frac{z_1 z_2}{z_2 + z_2}
$$

$$
c_{0C} z_{SC} = \frac{4z_1z_2}{z_1 + 4z_2} = \frac{z_1z_2}{1 + \frac{z_1}{4z_2}}
$$

$$
z_{0\pi} = \sqrt{z_{0C} z_{SC}}
$$

6 *Electrical Networks*

Propagation Constant

The propagation constant of a symmetrical π network is same as that of a symmetrical T network.

Characteristic of Filters

A filter transmits or passes desired range of frequencies without loss and attenuates all undesired frequencies. The propagation constant

$$
\gamma = \alpha + j\beta
$$

where α is attenuation constant and β is the phase constant. We know that

$$
\sinh \frac{y}{2} = \sqrt{\frac{z_1}{4z_2}}
$$

$$
\sinh \left(\frac{u+j\beta}{2}\right) = \sinh \frac{u}{2} \cos \frac{\beta}{2} + j \cosh \frac{u}{2} \sin \frac{\beta}{2}
$$

$$
= \sqrt{\frac{z_1}{4z_2}}
$$

Depending upon the type of z_1 and z_2 , these are two cases:

Case (i) If z_1 and z_2 are same type of reactances, then $\frac{z_1}{z_2}$ *z* is real

$$
|4z_2|
$$

\n
$$
\cosh \frac{\theta}{2} \sin \frac{\beta}{2} = 0
$$

\n
$$
\sin \frac{\beta}{2} = 0 \text{ if } \frac{\beta}{2} = 0 \text{ or } n\pi \text{ where } n = 0, 1, 2, ...
$$

\n
$$
\cos \frac{\beta}{2} = 1
$$

\n
$$
\sinh \frac{\theta}{2} = \sqrt{\frac{z_1}{4z_2}}
$$

\n
$$
\alpha = 2 \sinh^{-1} \sqrt{\frac{z_1}{4z_2}}
$$

Case (ii) If z_1 and z_2 are opposite type of reactances, then $\frac{z_1}{4z_2}$ *z* $\frac{z_1}{z_2}$ is negative, i.e $\frac{z_1}{4z_2}$ $4z_2$ *z z* $\lt 0$ and $\frac{\xi_1}{\xi_2}$ $4z_2$ *z z* is imaginary

$$
\sinh \frac{a}{2} \cos \frac{\beta}{2} = 0
$$

$$
\cosh \frac{a}{2} \sin \frac{\beta}{2} = \sqrt{\frac{z_1}{4z_2}}
$$

Both the above equations must be satisfied simultaneously by α and β . Two conditions may arise

 $4z_2$ *z z*

(a)
$$
\sinh \frac{\theta}{2} = 0
$$
 i.e. $\alpha = 0$ when $\beta \neq 0$ and $\sin \frac{\theta}{2} = \sqrt{\frac{z_1}{4z_2}}$ as $\cosh \frac{\theta}{2} = 1$

This signifies the region of zero attenuation or pass band which is limited by the upper limit of sine terms.

$$
\sin \frac{\beta}{2} = 1
$$

-1 < $\frac{z_1}{4z_2}$ < 0
The phase angle in the pass band

 $\beta = 2 \sin^{-1}$

(b)
\n
$$
\cos \frac{\beta}{2} = 0
$$
\n
$$
\sin \frac{\beta}{2} = \pm 1
$$
\n
$$
\cosh \frac{\alpha}{2} = \sqrt{\frac{z_1}{4z_2}}
$$

This signifies a stop band since $\alpha \neq 0$

$$
\alpha = 2 \cosh^{-1} \sqrt{\frac{z_1}{4z_2}}
$$

$$
\frac{z_1}{4z_2} < -1
$$

Constant k filter

In constant k filters, z_1 and z_2 are opposite type of reactances.

 $z_1 z_2 = k^2$

where k is a constant independent of frequency. There are two types of constant k type filters

- (i) constant *k* low pass filter
- (ii) constant *k* high pass filter

Constant k low pass filter

Figure 4 shows constant *k* low pass filter.

Let
\n
$$
z_{1} = j\omega L
$$
\n
$$
z_{2} = \frac{1}{j\omega C} = \frac{-j}{\omega C}
$$
\n
$$
z_{1}z_{2} = \frac{L}{C} = k^{2}
$$
\n
$$
k = \sqrt{\frac{L}{C}}
$$

Determination of pass band and stop band:

(i) when

$$
\frac{z_1}{4z_2} = 0
$$

$$
\frac{j\theta L}{-j/\theta C} = 0
$$

$$
\frac{-\theta^2 LC}{4} = 0
$$

$$
\omega = 0
$$

$$
f = 0
$$

z

(ii) when

$$
\frac{y}{4z_2} = -1
$$

$$
\frac{j\theta L}{-4j/\theta C} = -1
$$

$$
\frac{\theta^2 LC}{4} = 1
$$

$$
\frac{4\pi^2 f^2 LC}{4} = 1
$$

$$
f = f_C = \frac{1}{\pi \sqrt{LC}}
$$

The passband starts at $f = 0$ and continues upto f_C , the cutoff frequency. All the frequencies above.

cutoff frequency *f_C* are in the attenuation or stop band. Thus, the network is called a low-pass filter.
 $\sinh \frac{l}{r} = \sqrt{\frac{z_1}{r^2}} = \sqrt{\frac{-\theta^2 LC}{r^2}} = \frac{j\theta \sqrt{LC}}{r^2}$

$$
\sinh \frac{y}{2} = \sqrt{\frac{z_1}{4z_2}} = \sqrt{\frac{-0^{-2}LC}{4}} = \frac{j0 \sqrt{LC}}{2}
$$

$$
= \frac{j2x f}{2x f_C} = j \frac{f}{f_C}
$$

We also know that in the pass band

$$
-1 < \frac{z_1}{4z_2} < 0
$$
\n
$$
-1 < \frac{-\theta^2 LC}{4} < 0
$$
\n
$$
-1 < -\left(\frac{f}{f_C}\right)^2 < 0
$$
\n
$$
\frac{f}{f_C} < 1
$$
\n
$$
\beta = 2 \sin^{-1} \left(\frac{f}{f_C}\right)
$$
\n
$$
\alpha = 0
$$

 \overline{a}

In the attenuation band,

$$
\frac{z_1}{4z_2} < -1
$$
\n
$$
\frac{f}{f_C} > 1
$$
\n
$$
\alpha = 2 \cosh^{-1} \left(\frac{z_1}{4z_2} \right) = 2 \cosh^{-1} \left(\frac{f}{f_C} \right)
$$
\n
$$
\beta = \pi
$$

The variation of α and β is plotted in the Fig. 6.

Fig. 6

The attenuation α is zero throughout the pass band but increases gradually from the cutoff frequency. The phase shift β is zero at zero frequency and increases gradually through the pass band, reaches π at cutoff frequency f_C . It remains at π for all frequencies beyond f_C .

Determination of characteristic impedance:

The characteristic impedance of low pass filter will be given by

$$
z_{0T} = \sqrt{z_1 z_2 \left(1 + \frac{z_1}{4z_2}\right)}
$$

$$
= \sqrt{\frac{L}{C} \left(1 - \frac{\theta^2 LC}{4}\right)}
$$

$$
= k \sqrt{1 - \left(\frac{f}{f_C}\right)^2}
$$

$$
z_{0\pi} = \frac{z_1 z_2}{z_{0T}} = \frac{k}{\sqrt{1 - \left(\frac{f}{f_C}\right)^2}}
$$

The plots of characteristic impedance are shown in Fig. 7.

 z_{0T} is real when $f < f_C$ i.e. in the pass band. If $f = f_C$, $z_{0T} = 0$ and for $f > f_C$, z_{0T} is imaginary in the attenuation band, rising to infinite reactance at infinite frequency.

 $z_{0\pi}$ is real when $f < f_C$. If $f = f_C$, $z_{0\pi}$ is finite and for $f > f_C$, $z_{0\pi}$ is imaginary.

Design of Filter

A low pass filter can be designed from the specifications of cutoff frequency and load.

At cutoff frequency f_C ,

$$
\frac{z_1}{4z_2} = -1
$$

$$
z_1 = -4z_2
$$

$$
j\omega_C L = \frac{4}{j\omega_C C}
$$

$$
\pi^{2}f_{C}^{2} LC = 1
$$

But

$$
k^{2} = \frac{L}{C}
$$

$$
\pi^{2}f_{C}^{2}k^{2}C^{2} = 1
$$

$$
C = \frac{1}{\pi f_{C}k}
$$

$$
L = k^{2}C = \frac{k}{\pi f}
$$

Constant k high pass filter

Constant *k* high pass filter is obtained by changing the positions of series and shunt arms of the constant *k* low

C k

(ii) when

$$
z_1 = -4z_2
$$

$$
\frac{-j}{\sqrt[n]{c}} = -4j\omega L
$$

$$
\omega^2 LC = \frac{1}{4}
$$

C

 $4z_2$ *z*

 $\omega = \infty$

 $\frac{z_1}{z_2} = -1$

12 *Electrical Networks*

$$
\omega^2 = \frac{1}{4LC}
$$

$$
f = \frac{1}{4t\sqrt{LC}}
$$

$$
f = f_C = \frac{1}{4t\sqrt{LC}}
$$

The reactances z_1 and z_2 are shown in Fig. 9.

As seen from Fig. 9 the filter passes all the frequency beyond f_C . All frequencies below the cutoff frequency lie in attenuation or stop band. Hence the network is called a high pass filter.

$$
\sinh \frac{y}{2} = \sqrt{\frac{z_1}{4z_2}} = \sqrt{\frac{1}{4\pi^2 LC}}
$$

$$
= \sqrt{\frac{(4\pi)^2 f_C^2}{4\pi^2}}
$$

$$
= j \frac{f_C}{f}
$$

We know that in pass band

$$
-1 < \frac{z_1}{4z_2} < 0
$$
\n
$$
-1 < -\frac{f_C}{f}
$$
\n
$$
\frac{f_C}{f} < 1
$$
\n
$$
\beta = 2\sin^{-1}\left(\frac{f_C}{f}\right)
$$
\n
$$
\alpha = 0
$$

In the attenuation band

1 $4z_2$ *z* $\frac{y_1}{z_2}$ < -1

The variation of α and β is plotted in the Fig. 10.

The phase constant β remains at constant value π in the stop band i.e. in $0 < f < f_C$. The phase constant β increases from π to – π at f_C and reaches 0 value gradually as f increases in the pass band. The attenuation constant α is infinity at zero frequency and gradually to zero and remains at zero troughout the passband i.e. in $f_C < f < \infty$.

Determination of Characteristic Impedance

The characteristic impedance will be given by

$$
z_{0T} = \sqrt{z_1 z_2 \left(1 + \frac{z_1}{4z_2}\right)}
$$

$$
= \sqrt{\frac{L}{C} \left(1 - \frac{1}{4\theta^2 LC}\right)}
$$

$$
= k\sqrt{1 - \left(\frac{f_C}{f}\right)^2}
$$

$$
z_{0\pi} = \frac{z_1 z_2}{\theta} = \frac{k^2}{\theta^2} = \frac{k}{\theta}
$$

or z_{0T} $(f_c)^2$ $T \sim 0$ ^T $\sqrt{1-\left(\frac{f_C}{f_C}\right)}$

f

 $-\left(\frac{f_C}{f}\right)$

 z_{0T} z_{0T} $\Big|_1$ $\Big| f$

 $Similarly$

The plots of characteristic impedances are shown in Fig. 11.

Design of Filter

A high pass filter can be designed similar to the low pass filter by choosing a resistive load *R* equal to the constant *k* such that

$$
R = k = \sqrt{\frac{L}{C}}
$$

\n
$$
f_C = \frac{1}{4t\sqrt{LC}}
$$

\n
$$
f_C = \frac{k}{4t\ L} = \frac{1}{4t\ Ck}
$$

\nSince
\n
$$
\sqrt{C} = \frac{L}{k}
$$

\n
$$
L = \frac{K}{4t\ f_C}
$$

\n
$$
C = \frac{1}{4t\ f_Ck}
$$

BAND PASS FILTER

A band pass filter attenuates all frequencies below a lower cutoff frequency and above an upper cutoff frequency. It passes a band of frequencies without attenuation. A band pass filter is obtained by using a low pass filter followed by a high pass filter.

Figure 12 shows a band pass filter. The series arm is a series resonant circuit comprising L_1 and C_1 while its shunt arm is formed by a parallel resonant circuit L_2 and C_2 . The resonant frequency of series arm and shunt arm are made equal.

For this condition,

$$
\omega_0 \frac{L_1}{2} = \frac{2}{\sqrt[\theta]{\theta_0 C_1}}
$$

$$
\omega_0^2 = \frac{1}{L_1 C_1}
$$

$$
\frac{1}{\sqrt[\theta]{\theta_0 C_2}} = \omega_0 L_2
$$

$$
\omega_0^2 = \frac{1}{L_2 C_2}
$$

 $L_1C_1 = L_2C_2$

For series arm,

Also,

$$
z_1 = j\omega L_1 - \frac{j}{\omega C_1}
$$

$$
= j\left(\frac{\omega^2 L_1 C_1 - 1}{\omega C_1}\right)
$$

For shunt arm,

$$
z_2 = \frac{j_{\emptyset} L_2 \frac{1}{j_{\emptyset} C_2}}{j_{\emptyset} L_2 + \frac{1}{j_{\emptyset} C_2}} = \frac{j_{\emptyset} L_2}{1 - {\emptyset}^2 L_2 C_2}
$$

$$
z_1 z_2 = j \left({\frac{{\emptyset}^2 L_1 C_1 - 1}{\emptyset C_1}} \right) \left({\frac{j_{\emptyset} L_2}{1 - {\emptyset}^2 L_2 C_2}} \right)
$$

$$
= \frac{L_2}{C_1} \left({\frac{{\emptyset}^2 L_1 C_1 - 1}{1 - {\emptyset}^2 L_2 C_2}} \right)
$$

$$
= \frac{L_2}{C_1} = \frac{L_1}{C_2} = k^2
$$

where *k* is constant.

For constant *k* type filter, at cutoff frequency,

$$
z_1 = -4z_2
$$

\n
$$
z_1^2 = -4z_1z_2 = -4k^2
$$

\n
$$
z_1 = \pm j2k
$$

i.e. the z_1 at lower cutoff frequency is equal to the $-z_1$ at the upper cutoff frequency.

$$
\left(\frac{1}{j\omega C_1} - j\omega_1 L_1\right) = j\omega_2 L_1 - \frac{1}{j\omega_2 C_1}
$$

$$
1 - \omega^2 L_1 C_1 = \frac{\omega_1}{\omega_2} (\omega^2 L_1 C_1 - 1)
$$

 But

$$
\omega_0^2 = \frac{1}{L_1 C_1}
$$

$$
1 - \frac{\omega_1^2}{\omega_0^2} = \frac{\omega_1}{\omega_2} \left(\frac{\omega_2^2}{\omega_0^2} - 1 \right)
$$

$$
(\omega_0^2 - \omega_1^2) \omega_2 = \omega_1 (\omega_2^2 - \omega_0^2)
$$

$$
\omega_0^2 \omega_2 - \omega_1^2 \omega_2 = \omega_1 \omega_2^2 - \omega_1 \omega_0^2
$$

$$
\omega_0^2 (\omega_1 + \omega_2) = \omega_1 \omega_2 (\omega_2 + \omega_1)
$$

$$
\omega_0^2 = \omega_1 \omega_2
$$

$$
f_0 = \sqrt{f_1 f_2}
$$

Thus resonant frequency is the geometric mean of the cutoff frequencies. The variation of reactances with respect to frequency is shown in Fig. 13

Design: If the filter is terminated in a load resistance $R = k$, then at lower cutoff frequency

$$
z_{1} = -2jk
$$
\n
$$
\left(\frac{1}{j\omega_{1}C_{1}} + j\omega_{1}L_{1}\right) = -2jk
$$
\n
$$
\frac{1}{\omega_{1}C_{1}} - \omega_{1}L_{1} = 2k
$$
\n
$$
1 - \omega_{1}^{2}L_{1}C_{1} = 2k\omega_{1}C_{1}
$$
\n
$$
1 - \frac{\omega_{1}^{2}}{\omega_{0}^{2}} = 2k\omega_{1}C_{1}
$$
\n
$$
1 - \left(\frac{f_{1}}{f_{0}}\right)^{2} = 4\pi k f_{1}C_{1}
$$

$$
1 - \frac{f_1^2}{f_1 f_2} = 4\pi k f_1 C_1
$$

\n
$$
f_2 - f_1 = 4\pi k f_1 f_2 C_1
$$

\n
$$
C_1 = \frac{f_2 - f_1}{4\pi k f_1 f_2}
$$

\n
$$
L_1 = \frac{1}{\sqrt{\pi} \sqrt{\frac{2}{c_1}}} = \frac{4\pi k f_1 f_2}{\sqrt{\pi} \sqrt{\frac{2}{c_1} - f_1}}
$$

\n
$$
= \frac{k}{\pi (f_2 - f_1)}
$$

For shunt arm,

$$
z_1 z_2 = \frac{L_2}{C_1} = \frac{L_1}{C_2} = k^2
$$

$$
L_2 = C_1 k^2 = \frac{(f_2 - f_1)k}{4t f_1 f_2}
$$

$$
C_2 = \frac{L_1}{k^2} = \frac{1}{t (f_2 - f_1)k}
$$

Band-stop filter

A band stop filter attenuates a specified band of frequencies and permits all frequencies below and above this band. A band stop filter is realized by connecting a low pass filter in parallel with a high pass filter.

Figure 14 shows a bandstop filter.

As in the band pass filter, the series and shunt arms are chosen to resonate at same frequency ω_0 . For series arm,

For shunt arm,

At cutoff frequencies

and
\n
$$
f_0 = \sqrt{f_1 f_2}
$$

\nAt cutoff frequencies
\n $z_1 = -4z_2$
\n $z_1 z_2 = -4z_2^2 = k^2$
\n $z_2 = \pm j \frac{k}{2}$

Design: If the laod is terminated in load resistance $R = k$, then at lower cutoff frequency,

$$
z_2 = j \left(\frac{1}{\phi_1 C_2} - \phi_1 L_2 \right) = j \frac{k}{2}
$$

$$
\frac{1}{\phi_1 C_2} - \omega_1 L_2 = \frac{k}{2}
$$

$$
1 - \omega_1^2 C_2 L_2 = \omega_1 C_2 \frac{k}{2}
$$

$$
1 - \left(\frac{f_1}{f_0} \right)^2 = k \pi f_1 C_2
$$

$$
C_2 = \frac{1}{k \pi f_1} \left[1 - \left(\frac{f_1}{f_0} \right)^2 \right]
$$

$$
= \frac{1}{k \pi} \left[\frac{1}{f_1} - \frac{1}{f_2} \right]
$$

$$
= \frac{1}{k \pi} \left[\frac{f_2 - f_1}{f_1 f_2} \right]
$$

$$
L_2 = \frac{1}{\phi_0^2 C_2} = \frac{k f_1 f_2}{\phi_0^2 (f_2 - f_1)}
$$

$$
= \frac{k}{4 \pi (f_2 - f_1)}
$$

$$
k^2 = \frac{L_1}{C_2} = \frac{L_2}{C_1}
$$

$$
L_1 = k^2 C_2 = \frac{k}{\pi} \left(\frac{f_2 - f_1}{f_1 f_2} \right)
$$

$$
C_1 = \frac{L_2}{k^2} = \frac{1}{4 \pi k (f_2 - f_1)}
$$