SE comp III Applied Moeths-III 31 May 2014

(OLD COURSE)

QP Code: MV-17871

(3 Hours)

[Total Marks: 100

NB 1. Question No.I is compulsory

- 2. Attempt any four from the remaining six questions
- 3. Figures to the right indicate full marks

Q1 a Find Fourier Series for $f(x) = x^2$ in $(-\pi, \pi)$

[20]

b Express the given matrix A= $\begin{bmatrix} -1 & 2+i & 5-3i \\ 2-i & 7 & 5i \\ 5+3i & -5i & 2 \end{bmatrix}$ as sum of Hermitian and

Skew-Hermitian matrices.

- c. Find Laplace Transform of $(e^t.\cos t)^2$
- d Find Z transform of the sequence $f(k) = (1/3)^k$, $k \ge 0$

Q2 a Find Laplace Transform of
$$f(t) = \begin{cases} a\sin pt ; & 0 < t < \pi/p \\ 0 & ; \pi/p < t < 2\pi/p \end{cases}, \quad f(t + 2\pi/p) = f(t)$$
 [6]

b Reduce to normal form and find rank of A=
$$\begin{bmatrix} 1 & 3 & 5 & 7 \\ 4 & 6 & 8 & 10 \\ 15 & 27 & 39 & 51 \\ 6 & 12 & 18 & 24 \end{bmatrix}$$
 [6]

c Find Fourier Series of
$$f(x) = \begin{cases} x & \text{; } 0 \le x \le \pi \\ 2\pi - x \text{ ; } \pi \le x \le 2\pi \end{cases}$$
. Hence deduce that
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$$
 [8]

Q3 a Find Fourier Sine Integra! of
$$f(x) = \begin{cases} \sin x & 0 \le x \le \pi \\ 0 & x > \pi \end{cases}$$
 [6]

b Evaluate the integral
$$\int_{0}^{\infty} \frac{\sin^2 t \cdot e^{-t}}{t} dt$$
 [6]

c For what value of k, the following equations are consistent?

$$x-3y+2z=4$$
, $2x+y-z=1$, $3x-2y+z=k$. Solve the system completely [8]

[Turn Over

- Q4 a Show that the functions $1, x, \frac{3x^2 1}{2}$ are orthogonal on (-1,1).
 - b Find Inverse Laplace Transform using Convolution Theorem $\frac{s}{(s^2 + a^2)(s^2 + b^2)}$ [6]
 - c Find half range sine series of $f(x) = lx x^2$ in (0,1) and hence prove that

$$\frac{1}{16} + \frac{1}{36} + \frac{1}{56} + \dots = \frac{\pi^6}{960}$$
 [8]

Q5 a Find Inverse Z transform of
$$\frac{2z^2 - 10z + 13}{(z-2)(z-3)^2}$$
, $2 < |z| < 3$ [6]

b Find non-singular matrices P and Q such that PAQ is in the Normal form of A.

Hence find Rank of
$$A = \begin{bmatrix} 3 & 2 & -1 & 5 \\ 5 & 1 & 4 & -2 \\ 1 & -4 & 11 & -19 \end{bmatrix}$$
 [6]

c Solve the Differential Equation using Laplace Transform $y'' + 4y' + 8y = 1 \ y(0) = 0, y'(0) = 1$

Q6 a Find the Complex form of Fourier series of
$$\cosh 2x + \sinh 2x$$
 in [-2,2] [6]

- b Show that the given vectors are Linearly Dependent and find the relation connecting them $X_1 = (1 \ 1 \ 3), X_2 = (1 \ 2 \ 3 \ 4), X_3 = (2 \ 3 \ 4 \ 7)$
- c Find Inverse Laplace Transform of the following functions

1)
$$\frac{e^{-2s}}{s^2 + 8s + 25}$$
 2) $\frac{3+2}{s^2 - 4s + 13}$ [8]

Q7 a Determine
$$a,b,c$$
 when $\begin{bmatrix} a & b & c \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$ is Orthogonal. Hence find Inverse of A. [6]

b Find
$$Z\{f(k) * g(k)\}$$
 if $f(k) = \frac{1}{3^k}$, $g(k) = \frac{1}{5^k}$

c Find Half Range Cosine Series for $f(x) = \sin x$ in $(0, \pi)$. Hence deduce that

$$\frac{1}{1\cdot 3} - \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} - \dots = \frac{\pi - 2}{4}$$

813- EDLL

2215114

(OLD COURSE)

QP Code: MV-17901

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four from the remaining questions.
- (3) Assume suitable data if necessary.
- 1. Attempt any four:—

20

- (a) Explain virtual short and virtual ground concept.
- (b) What are the different stability factors of biasing circuits.?
- (c) With the circuit diagram explain inverting summing Amplifier.
- (d) Explain why CE configuration is popular in amplifier circuit.
- (e) What is CMRR? What are the various methods to improve CMRR?
- 2. (a) With approximate analysis, for the amplifier shown in figure. Calculate the 15 Ri, Ais and Avs. The h-parameters of the transistor are hie = $1 \text{ k}\Omega$, hfe = 50, hre = 2.4×10^{-4} and hoe = 25×10^{-6} .

(b) How to calculate h-parameter using graphical method (only one method)?

3. (a) Explain how an op-amp can be used as:—

10

- (i) Integrator
- (ii) Differentiator
- (b) Design a regulator using IC-723 to meet the following specifications:—

10

- $V_0 = 5 \text{ V}$ $I_0 = 100 \text{ mA}$ $V_{in} = 15 \pm 20\%$ $I_{sc} = 150 \text{ mA}$ $V_{color} = 0.7 \text{ V}$
- 4. (a) What are the requirements of instrumentation amplifier?

 Explain 3-op-amp Instrumentation amplifier and Drive the expression for voitage gain.
 - (b) Explain the successive approximation type ADC.

8

QP Code: MV-	17	19	U	1
--------------	----	----	---	---

•

5.	(a)	Using IC555 design Astable multivibrator for frequency of 5 kHz and duty cycle of 70%. Draw the related waveforms.	10
	(b)	Draw the block digram of typical Op-amp. Explain function of each block.	6
	(c)	Explain the following terms for an op-amp:	4
		(i) Slew Rate (ii) CMRR	`
6.	(a)	Explain construction and working of n-channel JFET, with the help of characteristic curves.	10
	(b)	Derive the equation for transconductance in terms of pinch-off voltage and saturation drain current.	5
	(c)	Compare BJT and JFET.	5
7.	Wr	ite a short note on :—	20
	•	(a) Non-Inverting Schmitt trigger.	
		(b) PLL.	
		(c) Digital to Analog converter using R-2R Ladder.	
		(d) Zero crossing detector.	

.

•

.

.

S-E. sem III old comp. M-2014. SUB-COA.

(OLD COURSE) QP Code: MV-18039

	(3 Hours) [Total Marks:	100
	N. B.: (1) Question No. 1 is compulsory.	
	(2) Solve any four from questons No. 2 to 7.	
	(3) Draw suitable diagram, wherever necessary.	
	(4) Assume suitable data if required with justification.	
1.	(a) Explain Von-Neumman Machine.	10
	(b) Explain Instruction cycle with different stages.	10
2.	(a) Explain Booth Algorithm and implement for the number (-7) and (+13).	10
	(b) Explain Memory hierarchy and give various characteristics for 2-level memory hierarcy.	10
3.	(a) Draw Direct and set associative mapping for cache memory with advantages and disadvantages.	10
	(b) Explain with flowchart floating-point addition/substraction algorithm.	10
4.	(a) Explain different Hardwired control unit design techniques.	10
	(b) Explain Interrupt driven data transfer scheme.	10
5.		10
	(b) Explain virtual memory with role of segmentation and paging.	10
6.	(a) Compare RISC & CISC.	10
	(b) Explain ISA & PCI bus.	10
7.	Write note on following (any two):-	20
	(a) Interleaved Memory	
	(b) Systollic processor	
	(c) Addressing Modes with examples.	

SE semisi (old) SE comp. DLDA 13/16/14

(OLD COURSE) QP Code: MV-17972

(3 Hours) [Total Marks: 100

- N. B.: (1) Questions no. 1 is compulsory.
 - (2) Solve any four questions out of the remaining.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data is required.

1.	(a)	Find binary, octal and hexadecimal equivalent for the following numbers	4
		$(i) (32)_{10}$ $(ii) (51)_{10}$	
	(b)	Perform the following subtraction using TWO's complement method	4
		(i) $(11011)_2 - (1111)_2$ (ii) $(15)_{10} - (12)_{10}$	
	(c)	Perform the following operation	4
		(i) $(53.23)_8 + (24.56)_8$ (ii) $(FFAB)_{16} + (9A57)_{16}$	
	(d)	Express the following numbers in Gray code	4
	\	(i) $(25)_{10}$ (ii) $(11010111)_2$	
	(e)	Universal Properties of NAND gates.	4
	(0)	Oniversal Properties of Parties gates.	-
2.	(a)	Explain the following characteristics with respect to logic families — Propagation Delay, Noise margin, Current parameters, Fan in and Fan out.	10
	(h)	Draw a Two input TTL NAND gate circuit. Discuss the operation and draw	10
	(0)	its transfer characteristics.	
ŕ		its trainster orangement.	
2	(0)	Convert IV Elin Flon to T and SD Flin Flon to D	10
3.	` ′	Convert JK Flip Flop to T and SR Flip Flop to D.	10
	(0)	Find the reduced logical expression using Quine McClusky method	10
		$F(A, B, C, D) = \Sigma m(0, 2, 4, 6, 7, 8, 10, 12, 14, 15)$	
4.	(a)	TOT CITO TOTAL STATE TALLS AND A STATE OF THE STATE OF TH	10
		implement using NAND gates only	
•		$F(A, B, C, D) = \Sigma m(0, 1, 2, 3, 8, 9, 10, 11, 13, 15)$	
	(b)	Design ful ladder using decoders.	10
5.	(a)	Design a lockout free Mod 8 Synchronous Up counter using MS-JK Flip	10
	` ,	Flops	
	(b)	Implement	10
		F (A, B, C, D) = Σ m(0, 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15) using	
		(i) one 8: 1 multiplexer	
		(ii) 4: 1 multiplexers tree	
		(11) - I munipicació inco	

QP Code: MV-17972

6. (a) Design a Binary to Gray code converter (b) Design a two bit digital comparator and implement using minimum number of Gates. 7. Write short notes on: (any four) (i) Weighted and unweighted codes (ii) BCD adder (iii) Boolean Algebra (iv) Universal Shift Register (v) Asynchronous and Synchronous Sequential Circuits (vi) Race around condition in JK Flip Flop

•

(OLD COURSE) QP Code: MV-18009

(3 Hours) [Total Marks: 100

- N.B. (1) Question no. 1 is compulsory.
 - (2) Attempt any four from the remaining six questions.
 - (3) Figures to the right indicate full marks.
- 1. (a) Show that $AX(B \cap C) = (AXB) \cap (AXC)$
 - b) What is universal and existential quantifier? Give example.
 - (c) Using Mathematical Induction prove that $5^n 1$ is divisible by 4 for $n \ge 1$. 5
 - (d) Among the integers 1 and 300
 - (i) How many of them are divisible by 3, 5 or 7 and are not divisible by 3 nor by 5 nor by 7?
 - (ii) How many of them are divisible by 3 but not by 5 nor by 7?
- 2. (a) Consider the set $S = \{1, 2, 3, 4\}$ and a relation R on S given by $R = \{(4, 3), (2, 2), 10, (2, 1), (3, 1), (1, 2)\}$
 - (i) Show that R is not transitive
 - (ii) Find transitive closure of R using Warshall's algorithm.
 - (b) Let R be a relation on set of real number such that a R b if and only if a-b is an integer. Prove that R is an EQUIVALENCE RELATION.
- 3. (a) Show that all the divisors of 70 forms a lattice.
 - (b) Draw the Hasse diagrams $D_4 \times D_9$ where D_n is the set of positive divisors of n. 6
 - (c) Define the following terms with examples
 - (i) Partial Order Relation
 - (ii) Antisymmetric Relation.
- 4. (a) Find the number of vertices of the graph having 16 edges if degree of each vertex is 2. 4
 - (b) Check if the set $A = \{2, 4, 12, 16\}$ is a lattice under divisibility.
 - (c) Show that {0, 1, 2, 3, 4, 5} is an abelian group under the operation +6.
 - (d) Define isomorphic graphs. Determine whether the given graphs are isomorphic.

- 5. (a) Define Bijective function with example. if f: R → R is defined as f(x) = x³ and g: R → R is defined as g(x) = 4x² + 1 and h: R → R is defined as h(x) = 7x 1. Find the rule of defining (i) (hog) of and (ii) go (hof).
 - (b) Show that if any five integers from 1 to 8 are selected, then the sum of atleast two of them will be 9.
 - (c) Show that $(1, \oplus, \otimes)$ is a commutative ring with identity where the operations \oplus and \otimes are defined as $a \oplus b = a + b 1$ and $a \otimes b = a + b ab$.
- 6. (a) Define the following with example:

6

- (i) Ring homomorphism
- (ii) Field
- (iii) Spanning tree.
- (b) Let $H = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be a parity Check matrix. Decode the following words relative

to maximum likelihood decoding function.

- (i) 011001
- (ii) 101011
- (iii) 111010
- (c) Show that the function $f: R \{2\} \rightarrow R \{0\}$ where R is set of real numbers defined by $f(x) = \frac{1}{x-2}$ is a bijection. Find its inverse.

TURN OVER

7. (a) Find the generating function for the following sequences.

8

- (i) 1, 1, 1, 1, 1
- (ii) 2, 2, 2, 2, 2, 2
- (iii) 1, 1, 1, 1,
- (iv) $1, 0, -1, 0, 1, 0, -1, 0, \dots$
- (b) Solve the recurrence relation $d_n = 2d_{n-1} d_{n-2}$ with initial conditions $d_1 = 1.5$ and $d_2 = 3$.
- (c) Show that the lattice given in the following Hasse diagram are non distributive. 6

