5

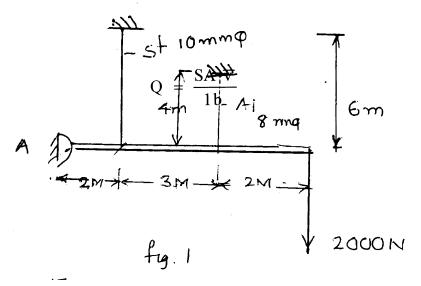
5

5

10

Con. 5429-13

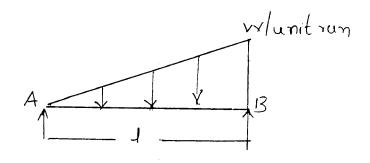
(Old Course)


(3 Hours)

[Total Marks: 100

- **N.B.**: (1) **Question** No. 1 is compulsory.
 - (2) Attempt any four from remaining six questions.
 - (3) Assume any suitable data if required.
- 1. (a) Explain briefly:-

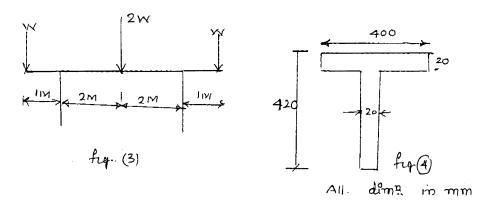
Point of Contraflexure and Bulk modulus.


- State the nature or characteristics of SFD and BMD under different types of loading. 5 (b)
- (c) Derive the relation between 3 elastic constants E K and G.
- Write a note on advantages of welded joints over rivetted joint.
- (d)
- (a) Find the stresses in the wires shown in fig. 1 2.

Assume $E = 2 \times 10^5 \text{ N/mm}^2$.

10

Sketch SFD and B.M.D. for a beam shown in fig.



2

3. (a) Show that **or** Derive the equation.

 $\frac{M}{\pm} = \frac{F}{Y} = \frac{E}{R}$ with usual notation.

(b) Find the safe value of W that can be applied on the beam shown in **fig. 3** and the cross-section is shown in **fig. 4**. Assume permissible stresses in compression and tension as 40 N/mm² and 28 N/mm² respectively.

- 4. (a) Assuming shear force of 100 kN on the c/sⁿ sketch shear stress distribution for the section shown, keeping:—
 - (i) Web. vertical
 - (ii) Web. horizontal

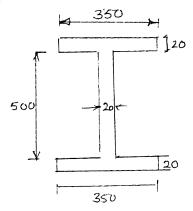
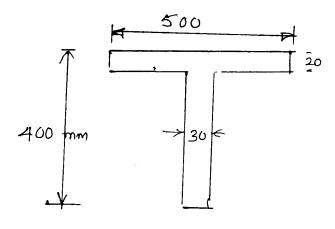


Fig. (5)

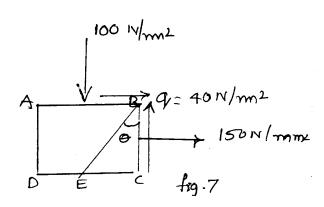
(b) Derive the Equation

 $Q = \frac{SA\overline{V}}{Ib}$ with usual rotation


5

5. (a) A solid shaft transmitts 350 kW at 2Hz, if is subjected to shear stress of 40 N/mm² and the angle of twist must not exceed 1° in a shaft length of 2 m. Design suitable diameter of the shaft.

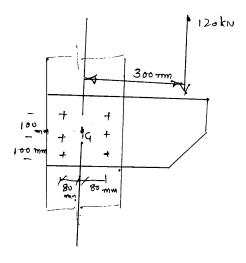
Take
$$G = 0.85 \times 10^5 \text{ MPa}$$


(b) Find the Cox of a T-section shown fig. (6).

10

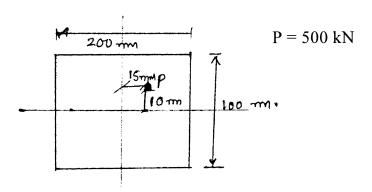
6. (a)

10



For a two dimensional strained element shown above calculate,

- (i) Normal and tangential stresses on any plane BE,
- (ii) Max. and Min. principal stresses and their orientations.
- (b) A thin cylinder 800 mm Internal diameter and 10 mm thick subjected to a Internal fluid pressure of 2 N/mm², assuming $\mu = 0.27$ and $E = 2 \times 10^5$ N/mm² find the change in dimension of the cylinder. Take the length of the cylinder 4 m.


7. (a) A bracket riveted to a column by 6 rivets of equall size as shown **fig. (8)** below. **10**Carries a load of 120 kN at a distance of 300 mm from the centre of the column.

Calculate the loads carried by top two rivets

(b) Find the stresses at all corners of a column section shown in fig. (9).

10

