(3 Hours)

[Total Marks: 100

- N. B.: (1)
- Question No. 1 is compulsory.
 - Attempt any four questions from remaining six questions. (2)
 - (3) Assumptions made should be clearly stated.
 - (4) Figures to the right indicate full marks.
- (a) Define with examples Moore and Mealy machine. 1.

5 5

(b) Find the equivalent DFA accepting the regular language defined by right linear grammar given as:-

 $S \rightarrow aA|bB$

 $A \rightarrow aA|bC|a$

 $B \rightarrow aB|b$

 $C \rightarrow bB$

- (c) State and prove pumping Lemma theorem for regular language.
- (d) Differentiate between Deterministic PDA and Non-deterministic PDA.

5

5

- **10** 2. (a) Design a finite state machine to determine whether a ternary number base 3 is divisible by 5. [Hint: $\Sigma = \{0,1,2\}$]
 - (b) Design a Mealy machine for the language (0+1)* (00+11) and convert it to a **10** Moore machine.
- **10** (a) Convert the following NFA with \in moves to DFA:-3.

10 (b) Let G be the grammar. $G = \{(S, X), \{a,b\}, P, S\}$ where productions are:

 $S \to aSX \big| b$

 $X \rightarrow Xb|a$

Find:— (i) Leftmost derivation. (ii) Rightmost derivation and

(iii) Parse tree for the string "aababa".

(a) Design turing machine for the language $L=\{a^nb^n n>=1\}$	10
(b) Design a turing machine to compare the binary numbers m and n such that if $(m > n)$ output is G, if $(m < n)$ output is L and when $(m = n)$ output is E.	10
(a) List and explain decision properties of regular language. Explain the test for checking emptiness of a regular language.	10
(b) Construct left linear and right linear grammar for the regular expression :- $(((01 + 10)^* 11)^*00)^*$	10
 (a) Construct a PDA equivalent to following grammar:- S → oBB B → OS S O 	10
and show the acceptance of 010 ⁴ by the PDA. (b) Reduce the following grammar to Greibach Normal form. (i) S → AB A → BSB BB b	5
$B \rightarrow a$ (ii) $S \rightarrow 0.1S 0.1$ $S \rightarrow 1.0S 1.0$ $S \rightarrow 0.0 \land$	5
Write short notes on (any four):— (a) Post Correspondence Problem (b) Chomsky Hierarchy (c) Universal turing machine (d) Recursive and Recursively emurable language (e) Classes of complexity.	20
	 (b) Design a turing machine to compare the binary numbers m and n such that if (m > n) output is G, if (m < n) output is L and when (m = n) output is E. (a) List and explain decision properties of regular language. Explain the test for checking emptiness of a regular language. (b) Construct left linear and right linear grammar for the regular expression:-(((01 + 10)* 11)*00)* (a) Construct a PDA equivalent to following grammar:- S→oBB B→OS S O and show the acceptance of 010⁴ by the PDA. (b) Reduce the following grammar to Greibach Normal form. (i) S→AB A→BSB BB b B→a (ii) S→01S 01 S→10S 10 S→00 ∧ Write short notes on (any four):- (a) Post Correspondence Problem (b) Chomsky Hierarchy (c) Universal turing machine (d) Recursive and Recursively emurable language