(3 Hours) [Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four out of remaining six questions.
 - (3) Figures to the right indicate full marks.
- 1. (a) Perform the following:—

5

5

- (i) (AF 19)₁₆ to Binary and Octal
- (ii) (1010)₂ to Gray code.
- (b) Write the equation for output Y. Minimize the equation using Boolean identity.

(c) State and prove De-Morgan's theorem.

5

(d) What is the function of preset and clear input in flip-flop?

5

2. (a) Prove the following expression:—

10

- (i) (B+A)(B+D)(A+C)(C+D) = BC+AD
- (ii) $A(B+C) + \overline{\overline{AB} + \overline{BC}} + \overline{A}(B+C) = B(AC+1) + C$.
- (b) Implement BCD to seven segment code converter.
- 3. (a) Simplify the following:—

10

10

 $f(A, B, C, D) = \sum m(0, 1, 5, 9, 13, 14, 15 + d(3, 4, 7, 10, 11))$

(b) Convert:—

10

- (i) SR to JK f/f
 - (ii) SR to D f/f.
- 10 4. (a) Minimize the following expression using Quine Mc Cluskey tabular method: $f(A, B, C, D) = \sum m(1, 3, 7, 9, 10, 11, 13, 15)$
 - (b) Design a twisted ring counter, using J-K. flip flop. Calculate propagation delay at 10 last stage, if propagation delay of each F/F is 4 µsec.
- 10 5. (a) Draw 8:1 multiplexer using logic gates along with its truth table. 10
 - (b) Design a 4 bit binary up-down counter using J-K flip flops.

6. (a) Explain serial-in serial-out shift register using SR flip-flop. Draw the timing diagram 10 with respect to negative edge triggered clock pulse.

- 10 (b) Explain -
 - (i) ECL logic family
 - (ii) NOR gate using TTL logic.
- 7. Write short notes on (any three):—

20

- (a) IC-555 timer [Monostable state] (b) IC-0808
- (c) Dynamic RAM cell
- (d) Hazards in combinational circuits
- (e) Voltage regulation using IC 723.