Con. 6602-13.

LJ-10598

		(3 Hours)	[Total Marks : 100
N.E	() ()	 Question No.1 is compulsory. Attempt any four out of remaining six questions. Figures to right indicate full marks. Assume suitable data if required. 	
1.	Ans	swer the following:— (a) (i) Obtain the XS-3code for (428) ₁₀ (ii) Convert 1110 Gray to Binary. (b) Define (i) Propagation Delay Time. (ii) Fan-In and Fan -Out. (c) Perform XS-03 addition (27) ₁₀ + (38) ₁₀ (d) Prove De-Morgan's theorem. (e) Compare TTL and ECL Logic Family.	20
2.	(a)	Minimize the following expression and realize using basic gates.	10
	(b)	Y = Σ m (1, 2, 3, 5, 7, 8, 9, 11). Obtain minimal expression using Quine Mc-Cluskey method. $f(A,B,C,D)=\Sigma m(1,5,6,12,13,14)+(2,4)$	10
3.	(a) (b)	Design and implement 3-bit synchronous up-counter using J-K flip Implement the following expression using 3 data select i/p multiplex $f(A, B, C, D) = \Sigma m (0,1,2,3,4,10,11,14,15)$	
4.	(a) (b)	 (i) Convert SR flip-flop to JK flip-flop. (ii) Convert JK flip-flop to T flip-flop. Show that: (i) (A+ ĀB) (A+AB) (A+C) =A (ii) AB+ ĀC=AB+ ĀC+BC 	10 10
5.	(a) (b)	Implement BCD to Excess 3 Converter. Design and Implement an even parity generator for 4- bit input.	10 10
6.	(a) (b)	Draw functional block diagram of IC 723 and explain its operation. Draw and explain monostable multivibrator IC 555.	10 10
7.	Wri	te short notes on – (Any three) :— (a) Hamming Codes. (b) Master-slave JK flip-flop. (c) ADC 0808. (d) ECL logic family.	20