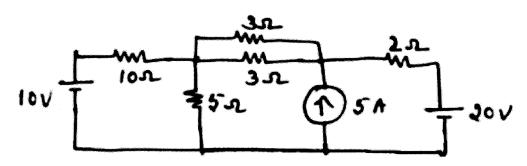

Con. 6879-13. LJ-10073

(3 Hours) [Total Marks: 100

- **N.B.**: (1) Question No. 1 is compulsory.
 - (2) Answer any **four** questions from remaing **six** questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary.
- 1. (a) Write down the conditions of series resonance. Plot frequency versus current. 3
 - (b) Final the value of unknown resistor 3


Find the Thevenin's equivalent circuit across AB.

- (d) Define R.M.S. value.
- (e) Write down the phase-line relationship in star and delta connection.
- (f) Derive the e.m.f. equation of a single phase transformer.
- (g) What is the working principle of DC generator?
- (h) Draw and explain the V-I characteristics of Zener diocle.

Con. 6879-LJ-10073-13.

2

2. (a) Determine the current through 10Ω resistor using Nodal analysis

- (b) An ac circuit consists of a pure resistance and an inductive coil connected in series.

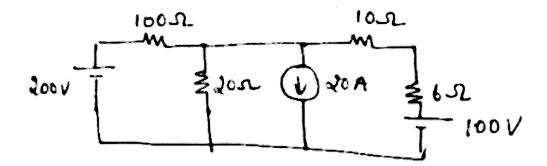
 The power dissipated in the resistance and in the coil are 1000 W and 200 W respectively. The voltage drop across the resistance and the coil are 200 V and 300 V respectively. Calculate the following:-
 - (i) Resistance of the pure resistor.
 - (ii) Resistance and reactance of the coil.
 - (iii) Power factor of the coil and the total circuit.
- (c) Each phase of star connected load consist of a 50 mH inductor connected in series with 50Ω resistor. The load is connected to a three phase 400 V, 50 Hz supply.
 Find:-
 - (i) Phase current
- (ii) Line current
- (iii) Power drawn
- (iv) Power factor.
- 3. (a) The open circuit and short circuit test reading of a 10KVA, 450/120 V, 50 Hz single phase ac transformer are as follows:-

O.C test (L.V side) Vo = 120V, Io = 4.2 A, Wo = 80W

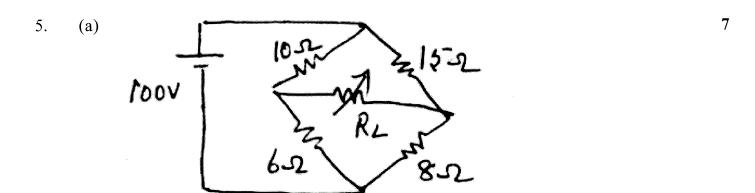
S.C test (H.V side) Vsc = 9.65V, Isc = 22.2A Wsc = 120W

Compute the following:-

- (i) Draw the equivalent circuit and mark the circuit constants.
- (ii) Efficiency and regulation at full load and 0.8 pf lag.
- (iii) The maximum efficiency at 0.8 pf lag.
- (b) Derive condition for maximum efficiency of a single phase transformer.
- (c) Explain the generation of rotating magnetic field in a three phase induction motor.


6

6


8

4

4. (a) Find current through 100Ω using superposition theorem.

- (b) A coil of resistance 20Ω and inductance 0.1H is connected in series with a capacitor of $200~\mu F$ capacitance across a supply voltage of 230~V, 50~Hz ac. Find the resonance frequency. Also calculate the current through the circuit.
- (c) Two watt meters are used for measuring the power input and the power factor of a load. If the reading of the meters are $W_1 = 2 \text{ kW}$ and $W_2 = 7 \text{ kW}$, find power input and power factor.
- (d) Draw and explain the working of a single phase bridge rectifier. Derive the expression of ripple factor.

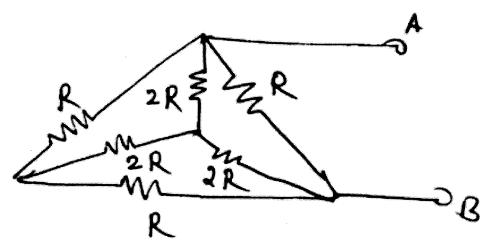
Find the value of R_L which deliver maximum power across it and what is the maximum power.

(b) In an R-L-C series circuit current lags behind applied voltage by 45°. The voltage across the inductance has maximum value equal to twice the maximum value of voltage across capacitance. The voltage across inductance is 300 sin (1000t) and R = 20Ω. Find the values of inductance and capacitance.

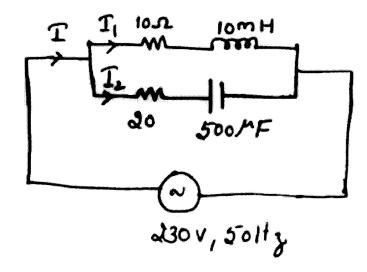
4

(c) A 5kVA distribution transformer has a full load efficiency of 95% at which copper loss is equal to iron loss. The transformer is loaded in a 24 hour period as follows:-

No load for 10 hrs.


1/4 full load for 7 hrs.

½ full load for 5 hrs.


Full load for 2 hours.

Calculate the All-day efficiency of the transformer.

6. (a) Determine the resistance between A and B.

(b) Find I, I_1 , I_2 and power factor of the whole circuit.

(c) Show that sum of the reading of wattmeter in a two wattmeter power measurement method gives active power. Draw circuit diagram and phasor diagram.

7

7

Con. 6879-LJ-10073-13.

- 7. (a) Draw complete phasor diagram of a single phase transformer connected to a lagging 5 load.
 - (b) Explain double field revolving theory for single phase induction motor. 5
 - (c) Draw the experimental setup of a common emitter configuration and explain input and output characteristics.
 - (d) Draw power triangle for R-L circuit and mark all the sides. Write down the equation and units of all power.
 - (e) Define cycle, time period, frequency, phase and phase difference with respect to an ac circuit.