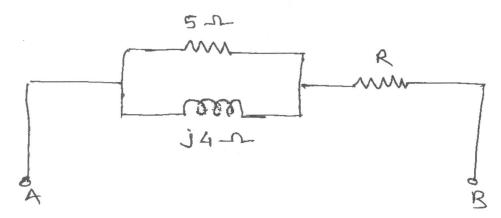
BEE


6407-11.

MP-2488

(3 Hours)

[Total Marks: 100

- I.: (1) Question No. 1 is compulsory.
 - (2) Solve any four questions from remaining six questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary.
- (a) What are the losses in the transformer ? Explain why the rating of transformer 20 in KVA not in kW.
- (b) Derive the relation between power in Delta and Star system.
- (c) A lamp rated 110 Volt, 60 W is connected with another lamp rated 110 Volt, 100 W across 220 volt mains. Calculate the resistance that should be joined in parallel with the first lamp so that both the lamps may take their rated power.
- (d) Explain the effect of temperature on resistance of different material.
- (a) Explain full wave rectifier circuit using centre tap transformer. Find the expression 10 for RMS and average load current, TUF, rectifier efficiency.
- (b) The voltage of 150 V applied between A and B produces a current of 32 A. For 10 the circuit shown in figure. Find the value of R and p.f. of the circuit.

- (a) Explain two wattmeter method power measurements in 3 φ star-connected 10 balanced load.
- (b) Find the current across 4 Ω by superposition theorem.

6A (1) \$2.2 \$10.2 \$2.2 1.2 3.2 24V 4.2

[TURN OVER

10

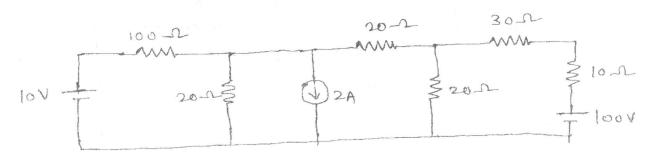
enosites have gained increasing

- 4. (a) Draw and explain input and output characteristics of CE transistor.
 - (b) 3 φ, 220 V, 50 Hz, 11·2 kW Induction Motor has full load efficiency of 88% and 1 draws a line current of 38 Amp. under full load, when connected to 3 φ, 220 V supply find the reading on Two wattmeter connected in the circuit to measure the input to the motor. Determine also p.f. at which motor is operating.
- 5. (a) An R-L-C series circuit has a current that lags behind applied voltage by 45°. The voltage across the inductance has maximum value equal to twice the maximum value of voltage across capacitance. The voltage across inductance is 300 sin (1000 t) and $R = 20 \Omega$. Find the values of inductance and capacitance.
 - (b) Explain double field revolving theory of single phase Induction Motor.
- 6. (a) 5 KVA, 200/400 V, 50 Hz 1o transformer give following results.

O. C.	200 V	0.7 A	60 W
S. C.	22 V	16 A	120 W

- (i) Draw equivalent circuit reffered to primary and insert all the parameters.
- (ii) Efficiency at 0.9 p.f. at full load.
- (b) Draw the resonance graph for the following: -
 - (i) XL
- (ii) R
- (iii) Z
- (iv) cos o
- (v) I

10


10

10

10

10

7. (a) Using Norton's theorem, find the current flowing through 100 Ω .

- (b) Write short notes on the following (any two):-
 - (i) Shaded Pole Motor
 - (ii) Three Phase Induction Motor
 - (iii) Classification and Application of D. C. Motor.