Please use this identifier to cite or link to this item:
http://localhost:8080/xmlui/handle/123456789/1415
Title: | Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity |
Authors: | Mirza, Salman Baig |
Keywords: | Staff Publication - SoP |
Issue Date: | 29-Dec-2015 |
Publisher: | International Journal of Biological Macromolecules |
Abstract: | The aim ofthe present study was to develop and optimize levofloxacin loaded solid lipid nanoparticles for the treatment of conjunctivitis. Box–Behnken experimental design was applied for optimization of solid lipid nanoparticles. The independent variables were stearic acid as lipid (X1), Tween 80 as surfactant (X2) and sodium deoxycholate as co-surfactant (X3) while particle size (Y1) and entrapment efficiency (Y2) were the dependent variables. Further in vitro release and antibacterial activity in vitro were also per- formed. The optimized formulation oflevofloxacin provides particle size of 237.82 nm and showed 78.71% entrapment efficiency and achieved flux 0.2493 g/cm2/h across excised goat cornea. In vitro release study showed prolonged drug release from the optimized formulation following Korsmeyer–Peppas model. Antimicrobial study revealed that the developed formulation possesses antibacterial activity against Staphylococcus aureus, and Escherichia coli equivalent to marketed eye drops. HET-CAM test demonstrated that optimized formulation was found to be non-irritant and safe for topical ophthalmic use. Our results concluded that solid lipid nanoparticles are an efficient carrier for ocular delivery of levofloxacin and other drugs. |
URI: | http://www.aiktcdspace.org:8080/jspui/handle/123456789/1415 |
ISSN: | 0141-8130 |
Appears in Collections: | Research - School of Pharmacy |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Salman_IJBM-2016.pdf | 3.44 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.