ELECTROANALYTICAL TECHNIQUES-6

Lecture 6

Ву

Dr. Shariq Syed

Who is Karl Fischer ??

- Karl Fischer was the scientist who in 1935 developed the original <u>Karl Fischer</u> method for water <u>determination</u>
- Fundamental principle:
- Bunsen Reaction between iodine and sulfur dioxide in an aqueous medium
- lodometric titration of SO₂ in water

$$2H_2O + SO_2 + I_2 \rightarrow H_2SO_4 + 2HI$$

- Modified to determine water in non-aqueous medium, excess of sulfur dioxide
- Using methanol as solvent, base (pyridine as buffering agent)

What is a Karl Fischer titration?

- A Karl Fischer titration determines the water content in a sample
- Titration based on an iodine/iodide redox reaction
- <u>Basic concept:</u> water reacts with iodine until the water is consumed and the endpoint is reached

Karl Fischer reaction

- <u>Step 1:</u>
- ROH (Alcohol) + SO₂ + R'N = RN'HSO₃R (alkylsulphite salt)
- The alcohol reacts with sulfur dioxide (SO₂) and base to form an intermediate alkylsulfite salt
- Step 2:
- $RN'HSO_3R + H_2O + I_2 + 2R'N = 2[R'NH]I + [R'NH]SO_4R$
- Alkylsulfite salt oxidized by iodine to an alkylsulfate salt.

Karl Fischer reaction

• ROH (Alcohol) + SO₂ + R'N = RN'HSO₃R (alkylsulphite salt)

- $RN'HSO_3R + H_2O + I_2 + 2R'N = 2[R'NH]I + [R'NH]SO_4R$
- This oxidation reaction consumes water
- Water and iodine are consumed in a 1:1 ratio in the above reaction.
- All of the water present in sample is consumed by iodine
- Excess iodine is then detected voltametrically by the titrator's indicator electrode or visually

Different Karl Fischer titration Methods

- Two types of methods (differ in how iodine is generated):
- Volumetric titration method:
 - lodine directly added, reagent volume measured
- <u>Coulometric titration method</u>:
 - lodine generated electrochemically during the titration
 - Water is quantified on the basis of the total charge passed (Q), as measured by current (amperes) and time (seconds)
 - Q = 1 C (Coulomb) = 1 A x 1 s where 1 mg H_2O = 10.72 C

Karl Fischer reagent

- Original reagent prepared by action of sulphur dioxide on iodine in a mixture of anhydrous pyridine and anhydrous methanol
- Methanol unstable, different alcohols used instead: methoxyethanol, trifluoroethanol, cholorethanol
- Pyridine, too weak, is replaced these days (imidazole or primary amines)

Karl Fischer reagent (Preparation)

- Steps:
- 1. Dissolve 63 g of lodine in 100 ml of dehydrated pyridine
- 2. Cool in ice, pass SO₂ until gain of 32.3 g
- 3. Add sufficient Me₂OH to make 500 ml
- 4. Allow stand for 24 hrs
- 5. 1 ml reagent = 5 mg of H_2O
- 6. Standardize within 1 hr or daily before use

Karl Fischer reagent (Standardisation Procedure)

- Primary Standardisation:
- 1. 36 ml methanol + sufficient KF reagent to end point
- 2. Add 150 250 mg sodium tartarate and titrate to end point
- 3. Water equivalence factor (F) = 0.1566 W/V

F = Water mg/ml reagent

W = weight of sodium tartarate in mg

V = volume of reagent in ml

- <u>Secondary Standardisation:</u>
- 1. 2 ml + 1000 ml methanol
- 2. 25 ml of this solution titrated with KF
- Blank titration on 25 ml methanol
- 4. F (Water mg/ml reagent) = V* F/25 P/S.Y.B.Pharm./Sem.IV/2014

Determination of Water by KFR

• Procedure:

- Add 25 ml to titration flask
- Titrate to end point with KFR
- 3. Weigh/measure sufficient sample to contain 10-50 ml of H₂0
- 4. Quickly transfer to flask, stir vigorously, titrate with KFR
- 5. Water content in sample = S x F

S = Volume of KFR

F = water equivalence factor (mg of water

Advantages of Analysis

- 1. High accuracy and precision typically within 1% of available water, i.e. 3.00% appears as 2.97 3.03%
- 2. Selectivity for water
- 3. Small sample quantities required
- 4. Easy sample preparation
- 5. Short analysis duration
- 6. Nearly unlimited measuring range (1ppm to 100%)
 - 1. Volumetric method: 100 ppm 100 %
 - 2. Coulometric method: 1ppm 5 %
- 7. Suitability for analyzing: solids, liquids, gases
- 8. In contrast, loss on drying will detect the only volatile substances

Challenges with KF Method

- 1. Water has to be accessible and easily brought into methanol solution
- 2. Foods such as chocolate, release water slowly and with difficulty
- 3. This requires additional efforts to reliably bring the total water content into contact with the Karl Fischer reagents