		. 1 -toto its utility	10 10
Q3)	a) b)	Derive Darcy-weisbach equation and state its unity A uniform flow of velocity 7 m/s is flowing along x axis over a source and sink which are situated along x axis. The strength of source and sink is 18 m ² /s and they are at a distance of 1.9 m apart. Determine	10
		n T assign of stagnation points	
		ii) Length & width of the Rankine over	
		for incompressible laminar flows derive an	10
Q4)	a)	Starting from Navier stokes equation for incompression and equation for velocity profile for Couette flow. State the assumptions made equation Reynold's transport theorem with its proof	10
	b)	Explain Reynold's transport moorest	
Q5)) a)	Obtain Von Karman momentum integral equation Obtain Von Karman momentum integral equation 1.5m high situated in a vertical plane has a	10 10
	b)	Obtain Von Karman momentum integral equation A sliding gate 3m wide and 1.5m high situated in a vertical plane has a coefficient of friction between itself and guide of 0.18. If the gate weight is 19 kN and if its upper edge is at a depth of 9 m, what vertical force is required to	
		raise it? Neglect buoyancy force on gate	
		200 mm and lengths 450 m, 255 m	10
Q	6) a)	& 315m respectively are connected in service of flow of water if coefficients of	f
	b	friction are 0.0075, 0.0078 & 0.0072 respectively (specific components) friction is given by $\psi = 5x-6y$. Calculate the velocity components	05
		ii. Discuss the phenomenon of boundary layer separation	05
			04
Q	17)	i) Define: Source, Sink, Vortex, Circulation	04
	27) 2	Prandtl's mixing length the	04
		ii) Write a note of Frankli but and Control Surface iii) Define Control Volume and Control Surface	08
		b) Write short note on the following	00
		b) Write short note on the restaura	

i) Elbow Meter ii) Moody's Diagram