10

(OLD COURSE)

OP Code: 12073

			(OLD COCKEL) QI Code. 12070	
			(3 Hours) [Total Marks: 100	
	N.B.	(2	Question No. 1 is compulsary. Answer any 4 out of remaining six questions. Assume suitable data wherever required but justify the same. Figure to the right indicates full marks.	
	1.	(a)	Explain the current flow in pn junction & give the expression for Idiff in terms of diffusion constant & Vdiff in terms of doping concentration.	5
		(b)	Define VSWR, reflection coefficient & characteristic impedance.	5
		(c)	A typical substrate has a dielectric constant of 4.3 & loss factor of 0.02 at 6 GHz. find the conductivity of the substrate.	5
	*	(d)	Show that the maximum value of normalized resistance is numerically equal to the voltage standing wave ratio i.e. γ max = ρ .	5
	2.	(a)	A transmission line of characteristic impedance $Z_0 = 50 \Omega$ & length 0.2 λ is terminated in a load impedance $Z_L = 25 + j$ 30 Ω . Find the reflection coefficient, VSWR & i/p impedance by using smith chart.	10
		(b)	Starting from definition of time-averaed power, obtain expression for the power absorbed by the load for lossless and lossy transmission line.	10
	3.	(a)	Explain with equivalen circuits the RF behavious of resistor, capacitor & inductor.	1(
		(b)	Explain schottky contact with the help of energy band diagram for (i) Metal & semiconductor do ont interact (ii) Metal semiconductor contact.	1(
	4.	(a)	Design a buterworth lowpass filter having a cut-off frequency of 250MHz & attenuation of 15 dB at 300 MHz.	L
-	XION	(b)	Explain the design procedure of small signal BJT amplifier (PC circuit design & 1	10

A short circuited 50 Ω transmission line section is operated at 1GHz & possesses a phase velocity of 35% of the speed of light. Use both the analytical & smitch chart approach to determine the shortest lengths required to obtain on 4.7nH inductor.

Explain construction and functionality of HEMT