BE-EE (VII-Rev) Control Systems-II 09/13 QP Code:15484

(3 Hours)

	Total Marks:	10
N. B. • (1	1) Q. No.1 is compulsory.	00
(2	2) Attempt any four questions f	
(3	2) Attempt any four questions from the rest.	
(4)	3) Use of graph paper or remilog paper is compulsory wherever required. Figure to the right indicates full marks.	
1. So		
	olve any four.	
(a)	Explain the issues in implementing PID controller.	5
(b)	Which plant representation lends itself to easier design of Observer & Controller.	5
(c)	Explain the stability criterion of Digital system.	
(d)]	Explain the PLC Programming Units.	5
(e)]	Explain the Latch output & Unlatch output instruction of PLC.	5
	The state of output his decitor of PLC.	5
2.		
(a) I	For a unity feedback system with a forward transfer function	10
($G(s) = \frac{K}{s(s+50)(s+120)}$ Use frequency response technique to find the	10
V	value of gain "K" to yield 20% overshoot.	
(b) E	Explain the concept of Controllability & Observability of a system.	
nice es	of a system.	10
3.		
	100(c+10)	
	ne given plant, $G(s) = \frac{100(s+10)}{s(s+3)(s+12)}$	10
P	Design the phase variable feedback gain to yield a 5% overshoot and eak time of 0.3 seconds.	
(b) G	Given a Z.O.H. in cascade with $G_1(s) = \frac{8}{(s+4)}$, Find the sampled data	10
tra	ansfer function G(z). If sampling time T is 0.25 sec.	

4.

- (a) Design an observer for the plant $G(s) = \frac{(s+4)}{(s+1)(s+2)(s+5)}$ which is 10 represented in observer canonical form to yield 20.8% overshoot & settling time of 0.4 sec.
- (b) What is Derivative kick? Explain with block diagrams, how to overcome 10 the problem of derivative kick.