SEC GXTC | Sem-IX | EDY 03/12/2014

(OLD COURSE)

QP Code :14400

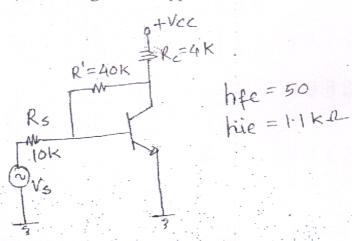
(3 Hours)

[Total Marks: 100]

20

20

10


10

10

10

10

- N.B.: (1) Question No. 1 and 2 are compulsory.
 - (2) Attempt any three questions from remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data wherever necessary.
- Design a two stage RC coupled CE-CE amplifier for the following parameters. Av ≥ 2500, Frequency ≤ 30Hz, stability factor ≤ 8, Vo = 2.5 volts. Use BC 147 A transistor.
- 2. Design two stage RC coupled amplifier for the following parameters Av \geq 75, frequency = 20Hz, Vo = 3 volts, $I_{OQ} = 1.38$ mA, Ri = 1 M Ω use BFWll JFET.
- 3. (a) Design large signal transformer coupled class A power amplifier to provide 6W output power to the 4Ω load.
 - (b) Draw two stage CE amplifier and derive the expression for
 - (i) Small signal mid band vltage gain (ii) Input impedance
 - (iii) Output impedance.
- 4. (a) Explain the working principle of a wein bridge oscillator. Derive the expression for the frequency of oscillation and the value of gain required for sustained oscillation.
 - (b) Draw the circuit diagram for class B push-pull power amplifier and derive the expression for conversion efficiency.
- 5. (a) Explain the operation of transistorized ASTABLE multivibrator with appropriate waveforms.
 - (b) For the feedback amplifier shown in figures, identify the type of feedback and find out Avf, Rif, Rof using -ve f/b approach.

TURN OVER