AE-1- ET- SEM-III-(CBSGS) 20th NOV 2014

QP Code: 14553

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

(2) Attempt any three from remaining questions.

(3) Assume suitable data if required and mention the same in answer book.

1. Attempt any five :-

20

(a) The PNP transistor shown in Fig la has β =50. Find the value of Rc to obtain Vc=+5V. What happens if transistor is replaced with another transistor having β =100.

- (b) Draw small signal model of JFET and explain significance of each parameter.
- (c) Why common collector amplifier is used as buffer. Why buffers are required.
- (d) Write down current equation of diode and explain significance of each parameters.
- (e) For the circuit shown in Fig le. Find I_{DS} and V_{DS} if $V_{RS}=1.5$ V.

GN-Con: 6460-14.

TURN OVER

54

- (f) Compare Collpit's and Clapp's oscillator.
- 2. (a) Explain working of n-channel EMOSFET with the help output characteristics, showing clearly effect of channel length modulation. Given equation of drain current in linear and saturation current along with conditions.
 - (b) Design JFET circuit with voltage divider biasing as shown in Fig 2b with JFET parameters I_{DSS} =12mA, V_p = -3.5V and λ =0. Let R_1+R_2 =100K, I_{DSQ} = 5mA and V_{DSQ} =5V.

- 3. (a) Draw circuit diagram of common emitter amplifier with voltage divider bias with bypassed emitter resistance and derive expression for voltage gain, current gain, input resistance, output resistance using hybrid-π model which includes early effect.
 - (b) In n-channel E-MOSFET
 - (i) Substrate doping $N_A = 10^{16}$ cm⁻³
 - (ii) Polysilicon Gae doping N_p=10²⁰ cm⁻³
 - (iii) Gate oxide thickness tox =0.5 μm
 - (iv) Oxide positive charge interface density=4x10¹⁰cm⁻²
 - (v) Charge of electron= 1.6×10^{-19} col
 - (vi) Permittivity of free space = 8.85x10⁻¹⁴ F/cm.
 - (vii) Dielectric constant of Si=11.9
 - (viii) Dielectric constant of Si0, =3.9

Find zero bias threshold voltage (V_{TO})

GN-Con: 6460-14.

TURN OVER

55

10

QP Code: 14553

Explain the working of wien-Bridge Oscillator. Derive the expression for frequency of Oscillation and the value of gain required for sustained oscillation.

For the circuit shown in Fig 4b, assume $\beta=100$.

(i) Find the venin's equivalent voltage $V_{\rm TH}$ and resistance $R_{\rm TH}$ for base circuit. (ii) Determine \boldsymbol{I}_{CQ} and \boldsymbol{V}_{CEQ}

1553

istics,

drain

JFET

and

10

10

10

10

(a) Draw a required diode clamper circuit to generate the output v_0 to from the input $v_1 = 10$

(i) $V_{\gamma} = 0V$

 $V_{\gamma} = 0.7$ V. Where V_{γ} is cutin voltage of diode.

QP Code: 14553

(b) What are different biasing techniques used to bias D-MOSFET and E-MOSFET. 10 Explain with the help of appropriate circuit diagrams.

. Write short notes on any four:—

20

- (i) Hybrid- π model of BJT
- (ii) Twin-T oscillator
- (iii) AC and DC load line.
- (iv) Construction and operation of photodiode.
- (v) MOS capacitor.

2. (

N.B

3. (2

4.

5.

6.