[Total Marks: 80

QP Code: 14910

	N.	 B.: (1) Question No. 1 is compulsory. (2) Attempt any 3 (three) out of the remaining 5 (five) questions. (3) Assume suitable data wherever necessary. Justify the assumption. (4) Draw suitable diagrams wherever necessary. 	
1.	(a)	Compare striplines and Microstrip lines.	5
	(b)	Explain the significance of Retarded magnetic vector potential and Retarded electric Scalar potential.	5
	(c)	With suitable example explain pattern Multiplication for Antenna Arrays.	5
	(d)	Explain how Richard's Transformation and unit elements are useful in RF filter designing.	5
2.	(a)	Explain with equivalent circuits the RF behavior of Resistor, Inductor and Capacitor.	10
	(b)	Design a maximally flat LPF with a cut-off frequency of 2GHz; generator and Load Impedance of 50 Ω ; and with 15 dB Insertion Loss at 3 GHz with discrete LC components.	10
3.	(a)	Using Image Parameter method design a Low-pass composite filter with a cut- off frequency 2 MHz and Impedance of 75 Ω . Place the Infinite attenuation pole at 2.05 MHz.	10
	(b)	Derive Array factor of N-element liner array, where all elements are equally fed and spaced. Also find the expression for the position of principle maxima, nulls and secondary maxima.	10

(a) Design a broadside Dolph-TChebyshev array of 6 elements with spacing 'd'

(b) Explain the working principle of Yagi-Uda Antenna and draw its radiation pattern.

(a) Explain the structure of Microstrip Antenna. Discuss its feed mechanisms and

between the elements and with a major to minor lobe ratio of 26 dB. Calculate

(3 Hours)

GN-Con. 8764-14.

Applications.

5.

the excitation coefficients.

Mention its applications.

10

10

10