

15/12/2014

QP Code :12561

(3 Hours)

[Total Marks: 80

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions out of the remaining five questions.
 - (3) Assume suitable data wherever necessary.
- 1. (a) Determine the fundamental period of the following signals:—

(i)
$$x(t) = \cos \frac{\pi}{3}t + \sin \frac{\pi}{4}t$$

(ii)
$$x[n] = \cos^2 \frac{\pi}{8}n$$

- (b) State and prove Time Shifting and Time Scaling property of continuous time Fourier Transform.
- (c) For the following system, determine whether it is. (i) memory less, (ii) causal, (iii) linear, (iv) time-invariant $y[n] = x[n^2]$
- (d) Find out even and odd component of the following two signals:

(i)
$$x(t) = t^3 + 3t$$

(ii)
$$x[n] = \cos n + \sin n + \cos (n) \sin (n)$$

(e) Determine whether the signals are power or energy signals. Calculate energy / power accordingly:

(i)
$$x(t) = 0.9 e^{-3t} u(t)$$

(ii)
$$x[n] = u[n]$$

2. (a) Find the inverse Laplace Transform of $\frac{s-2}{s(s+1)^3}$

5 using **10**

- (b) Let $x(t) = 1 \dots 0 \le t \le 2T$ and ; $h(t) = e^{-at} \dots 0 \le t \le T$. Compute y(t) using graphical convolution approach.
- (c) State and discuss the properties of the region of convergence for Z Transform.

...

5

$$H(z) = \frac{z}{\left(z - \frac{1}{4}\right)\left(z + \frac{1}{4}\right)\left(z - \frac{1}{2}\right)}$$

Write down possible ROCs. For different possible ROCs, determine causality and stability and impulse response of the system.

(b) Calculate Z transform of the following signals:

10

(i)
$$x[n] = n\left(-\frac{1}{4}\right)^n u[n] * \left(-\frac{1}{6}\right)^{-n} u[-n]$$

(ii)
$$x[n] = u[n-6] - u[n-10]$$