OP Code: 13714

(2 Hours)

Total Marks: 40

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from the remaining.
 - (3) Use of non-scientific calculator is allowed.
 - (4) Figures to the right indicate marks.
- (a) Find the nth derivative of $Y = \cos^2 x + (2x + 3)^{-1}$

(a) Find the Extreme values of $f(x,y) = x^3 + y^3 - 63(x+y) - 12xy$

(b) Obtain the reduction formula for $\int_0^{\frac{\pi}{2}} \sin^n x \, dx$ hence evaluate $\int_0^{\frac{\pi}{2}} \sin^8 x \, dx$.

(b) Find the volume of the solid generated by revolving about x-axis the region bounded by the curve $9x^2-4y^2=36$ in the interval x=2 to x=4.

4

- (a) Solve the system of equations by Crammer's rule. 4x - 3y + z = 1, x + 4y - 2z = 10, 2x - 2y + 3z = 4Find the Figer values of the Matrix A
 - (b) Find the Eigen values of the Matrix A.

$$A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$$

- (a) IF f(1)=10, f(2)=16, f(3)=26, f(4)=40, Estimate value of $f(2\cdot 5)$ using Newton's forward difference Interpolation formula.
 - (b) If U=log(x²+y²) prove that $\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial^2 U}{\partial y \partial x}$

- (a) Verify Rolle's mean value Theorem for $f(x) = e^{-x}(\sin x \cos x)$ in the interval $\left[\frac{\pi}{4} \frac{5\pi}{4}\right]$.
 - (b) Verify Euler's Theorem for u(x,y) = x/y + y/x

(a) Solve any one differential equation :-

- (i) $(x^3+y^3)dy = (x^2y)dx$
- (ii) $\frac{dy}{dx} = \frac{x y + 3}{2x 2y + 5}$
- (b) Find the length of loop of the curve $4y^2 = x(x-1)^2$

TURN OVER

6. (a) Solve any one differential equation:

(i)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \sin 2x$$

(ii)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{3x} + 5$$

- (b) If an error of 1% is found in measuring the sides of rectangle, find the resultant error in calculating the are of rectangle.
- 7. (a) Evaluate any **one** integral:-

(i)
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} d\theta$$

- (ii) $I = \int x \tan^{-1} x dx$
- (b) Use Simpson's 1/3rd rule to evaluate the Integral $\int_0^6 \frac{1}{1+x} dx$ by taking h=1.

BK-Con. 12238-14.