SE SENTU CBGS (ET SEE)

5

5

QP Code: 3488

(3 Hours)

Total Marks: 80

N.B. (1) Question No.1 is compulsory.

(2) Attempt any three questions out of the remaining five questions.

(3) Figures to right indicate full marks.

Evaluate $\left| z \right| dz$, where c is the left half of unit circle |z| = 1 from z = -i to z = iQ1. (a)

If λ is an Eigen value of the matrix A with corresponding Eigen vector X, prove that (b) λ^n is an Eigen value of A^n with corresponding Eigen vector X.

Find the extremal of $\int_{x}^{x_2} \frac{\sqrt{1+y'^2}}{x} dx$ (c)

Find the unit vector orthogonal to both [1,1,0] & [0,1,1](d)

Find the curve on which the functional $\int_{0}^{1} \left[y'^{2} + 12xy \right] dx \text{ with } y(0) = 0 \& y(1) = 1$ Q2. (a) can be Extremised. 6

Find the Eigen values and Eigen vectors for the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}$ (b) 6

Obtain two distinct Laurent's series expansions of $f(z) = \frac{2z-3}{z^2-4z+3}$ (c) (z-4) indicating the region of convergence in each case

If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, find A^{50} Q3. 6

Evaluate $\int_{c} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where c is the circle |z| = 36

Using Rayleigh-Ritz method, find an approximate solution for the extremal of the (c) functional $I(y) = \int_{0}^{1} (y'^{2} - 2y - 2xy) dx$ subject to y(0) = 2, y(1) = 1.

TURN OVER

8

6

8

- Q4. (a) Find the vector orthogonal to both [-6,4,2] & [3,1,5]
 - (b) Show that the matrix $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$ is derogatory and find its minimal polynomial.
 - (c) Reduce the matrix of the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 4x_1x_2 + 4x_1x_3 2x_2x_3$ to canonical form through congruent transformation and find its rank, signature, and value class.
- Q5. (a) Find the extremal of $\int_{x_0}^{x_1} (2xy y''^2) dx$
 - (b) Show that the set $W = \{[x, y, z] \mid y = x + z\}$ is a subspace of \mathbb{R}^n under the usual addition and scalar multiplication.
 - (c) Show that the following matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is diagonalisable. Also find the diagonal form and a diagonalising matrix.
- Q6. (a) If $f(a) = \int_{c}^{a} \frac{3z^{2} + 7z + 1}{z a}$, where c is a circle |z| = 2, find the values of i) f(-3), ii) f(i), iii) f'(1-i)
 - (b) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$
 - (c) Verify Cayley-Hamilton theorem for the matrix A and hence find A^{-1} and A^{4} .

Where
$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

JP-Con.: 10054-15.