SE SENTU CBGS (ET SEE) 5 5 **QP Code: 3488** (3 Hours) Total Marks: 80 N.B. (1) Question No.1 is compulsory. (2) Attempt any three questions out of the remaining five questions. (3) Figures to right indicate full marks. Evaluate $\left| z \right| dz$, where c is the left half of unit circle |z| = 1 from z = -i to z = iQ1. (a) If λ is an Eigen value of the matrix A with corresponding Eigen vector X, prove that (b) λ^n is an Eigen value of A^n with corresponding Eigen vector X. Find the extremal of $\int_{x}^{x_2} \frac{\sqrt{1+y'^2}}{x} dx$ (c) Find the unit vector orthogonal to both [1,1,0] & [0,1,1](d) Find the curve on which the functional $\int_{0}^{1} \left[y'^{2} + 12xy \right] dx \text{ with } y(0) = 0 \& y(1) = 1$ Q2. (a) can be Extremised. 6 Find the Eigen values and Eigen vectors for the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}$ (b) 6 Obtain two distinct Laurent's series expansions of $f(z) = \frac{2z-3}{z^2-4z+3}$ (c) (z-4) indicating the region of convergence in each case If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, find A^{50} Q3. 6 Evaluate $\int_{c} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, where c is the circle |z| = 36 Using Rayleigh-Ritz method, find an approximate solution for the extremal of the (c) functional $I(y) = \int_{0}^{1} (y'^{2} - 2y - 2xy) dx$ subject to y(0) = 2, y(1) = 1. TURN OVER 8 6 8 - Q4. (a) Find the vector orthogonal to both [-6,4,2] & [3,1,5] - (b) Show that the matrix $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$ is derogatory and find its minimal polynomial. - (c) Reduce the matrix of the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 4x_1x_2 + 4x_1x_3 2x_2x_3$ to canonical form through congruent transformation and find its rank, signature, and value class. - Q5. (a) Find the extremal of $\int_{x_0}^{x_1} (2xy y''^2) dx$ - (b) Show that the set $W = \{[x, y, z] \mid y = x + z\}$ is a subspace of \mathbb{R}^n under the usual addition and scalar multiplication. - (c) Show that the following matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is diagonalisable. Also find the diagonal form and a diagonalising matrix. - Q6. (a) If $f(a) = \int_{c}^{a} \frac{3z^{2} + 7z + 1}{z a}$, where c is a circle |z| = 2, find the values of i) f(-3), ii) f(i), iii) f'(1-i) - (b) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$ - (c) Verify Cayley-Hamilton theorem for the matrix A and hence find A^{-1} and A^{4} . Where $$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$ JP-Con.: 10054-15.