QP Code: 8416

(3 Hours)

[Total Marks: 100

Instruction: 1. Question No. 1 is cumpolsory

- 2. Out of remaining question attempt any four questions.
- 3. In all five question to be attempted.
- 4. Figures to the right indicate full marks.
- Q.1. a) One of zeros of a causal linear phase FIR filter is at $0.5 e^{-i\pi/3}$. Show the locations of the zeros and hence find the transfer function and impulse response of the filter
- b) Determine Zeros of the following FIR systems and indicate when the system is minimum phase maximum phase and mixed phase.

1.
$$H[z] = 6 + Z^{-1} + Z^{-2}$$
 2. $H[z] = 1 - Z^{-1} - 6Z^{-2}$

- c) Find the number of complex multiplications and complex additions required to find DFT for 32 point sequence. Compare them with number of computation required if FFT algorithm is used. 05
 - d) What is linear phase filters. Define group delay and phase delay.
- Q. 2. A) Derive Radix 2 Decimation in Time Fast Fourier Transform and draw its signal flow graph. [10]

Find x[n] using IFFT algorithm (use DIT IFFT)

[10]

[10]

05

- Q. 3 a) An 8 point sequence $x[n] = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - i) Find X[k] using DIF-FFT algorithm
- ii) Let $x_1[n] = \{5, 6, 7, 8, 1, 2, 3, 4\}$ using appropriate DFT property and result of part (i) determine $X_1[k]$ [10]
- b) Explain up sampling by non-integer factor, with a neat diagram and waveforms.
- Q.4 a) Design a Chebyshev i bandstop digital filter with the following specifications:

Passsband range. 0 to 275Hz and 2KHz to ∞

Stopband range: 550 to 1000Hz.

Samuling frequency: 8KHz

Passband attenuation: 1dB

Stopband attenuation: 15dB

Use BLT and assume T= 1sec.

[10]

QP Code: 8416

b) Design a Butterworth filter satisfying the following constraints:

 $0.75 \le |H(w)| \le 1$

for0≤w≤π/2

 $|H(w)| \le 0.2$

for 3π/4≤w≤π

Use Bilinear Transformation Method

[10]

Q. 5 a) Design FIR digital highpass filter with a frequency response

$$H(w) = 1$$
 $\pi/4 \le |w| \le \pi$

[w] ≤π/4

Use Hamming window. N = 7.

[10]

b) With a neat diagram describe frequency sampling realization of FIR filters.

[10]

Q. 6 a) An FIR filter is given by the difference equation

$$y[n] = 2x[n] + \frac{4}{5}x[n-1] + \frac{3}{2}x[n-2] + \frac{2}{3}x[n-3]$$

127

Determine the lattice form

[10]

b) Using linear convolution find y[n] for the sequences $x[n] = \{1,2,-1,2,3,-2,-3,-1,1,2,-1\}$ and h[n] = {1, 2}. Compare the result by solving the problem using overlap save method [10]

Q. 7 Write Short Notes on

[20]

- 1. Digital Resonator
- 2. Parseval's Energy theorem and its significance
- 3. Goertzel Algorithm
- 4. Application of signal processing in RADAR

ITURN OVER

RJ-Con. 9105-15.