SE-Sem-IV - computers. CBQS AOA

QP Code: 3542

		(3 Hours) [Total Marks: 80	
	N.B.	(1) Question No. 1 is compulsory.	.0
		(2) Attempt any three from the remaining five question.	
		(3) Assume suitable data if required.	/
			_
1.	(a)	Write abstract algorithm for greedy design method.	5
	(b)	Which are different factors considered for sorting elements.	5
	(c)	Explain flow shop scheduling technique.	5
	(d)	Explain three cases of master theorem.	5
			10
2.	(a)	Write and explain sum of subset algorithm for	10
		$n = 5$, $W = \{2, 7, 8, 9, 15\}$ $M = 17$	1.0
	(b)	Explain randomized version of Quick sort and derive its complexity	10
2	(-)	The short and the health and the sent Alexandra and deliver its best one and wonst one	10
3.	(a)	Implement the bubble sort Algorithm and derive its best case and worst case	10
	(h)	complexity.	10
	(0)	Find the Huffman code for the following message.	10
		"COLLEGE OF ENGINEERING"	
1	(0)	What is Hamiltonian cycle? Write an algorithm to find all Hamiltonian cycles.	10
4.		Suppose you are given n number of coins, in that one coin is faulty, its weight	10
	(0)	is less than standard coin weight. To find the faulty coin in a list using proper	10
		searching method. What will be the complexity of searching method.	
		Sourching motified. What will be the complexity of searching method.	
5.	(a)	Explain Job sequencing with deadliner for the given instance.	10
	(-)	$n = 5$, $\{P_1, P_2, P_3, P_4, P_5\} = \{20, 15, 10, 5, 3\}$	
		& $\{d_1, d_2, d_3, d_4, d_5\} = \{2, 2, 1, 3, 3\}$	
	(b)	Explain naive string matching algorithm with example.	10
	. ,		
6.	Wr	ite note on : (any two)	20
		(a) Rabin karp algorithm	
	_<\	(b) 15-puzzle problem	
	9	(c) Travelling sales person problem	
(7)		(d) Strassen's matrix multiplication.	

JP-Con.: 9993-15.