T. E Sem I - OLD - Extc - SS

6

Page 1 of 2 Q.P. Code: 3882

(OLD COURSE)

(3 Hours)

[Total Marks: 100

N.B.: (1) Questions No.1 is compulsory.

- (2) Attempt any five questions in all.
- (3) Assume suitable data, if required & state them clearly.
- 1. Answer any four of the following:

20

(a) A linear time invariant (LTI) system is characterized by the following difference equation.

$$y(n) = ay(n-1) + bx(n) \text{ for } 0 < a < 1.$$

Find the magnitude & phase of the frequency response $H(e^{j\omega})$ of the system.

- (b) Determine the z transform of the signal
 - $x(n) = n a^n u(n)$. Draw pole-zero plot & show ROC.
- (c) Let x(n) = u(n) u(n-5).

Find & sketch even & odd parts of x (n).

- (d) Determine the signal energy & signal power for the fellowing signals:
 - (i) $x(t) = e^{-3|t|}$
 - (ii) $x(t) = e^{-3t}$
- (e) State & explain convolution property of z transform.
- 2. (a) Find the Fourier series for the function x(t) defined

10

$$x(t) = \begin{cases} 0 & -\frac{T}{2} < t < 0 \\ A \sin \omega_0 t & 0 < t < \frac{T}{2} \end{cases}$$

and
$$x(t+T) = x(t)$$
, $\omega_v = 2\pi/T$

(b) Find the Laplace transform of the signals shown below.

10

3. (a) Obtain the Fourier transform of a rectangular pulse shown.

6

(b) Determine the O/P response of the system h(t) = u(t) to an input

8

 $x(t) = e^{-at} u(t), a>0.$

(c) Explain & prove time shifting & frequency shifting property of Fourier transform.

6

2

- 4. (a) Solve the following difference equation using z transform method. 10 x [n+2] + 3 x [n+1] + 2 x [n] = 0 Where the initial conditions are x [0] = 0 & x [1] = 1.
 - (b) A system is defined by the following difference equation
 - $y(n) \frac{1}{6}y(n-1) \frac{1}{6}y(n-2) = x(n).$
 - (i) Realize the system using direct form II & Parallel realisation.
 - (ii) Comment on the stability of the system.
- 5. (a) Obtain inverse z transform of the following X (z)

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})}$$
, ROC|z|>1

- (b) Prove that LTI system is stable if its impulse response is absolutely summable.
- (c) Compare discrete time Fourier transform & continuous time Fourier.
- 6. (a) Determine the system function & unit sample response of the system describe by the difference equation.

$$y[n] - \frac{1}{2}y[n-1] = 2x[n], y[-1] = 0.$$

- (b) Explain the relationship between Laplace transform & Fourier transform.
- (c) The impulse response of LTI system is h [n] = {1, 2, 1, -1} Find out the response of the system to the input signal x [n] = {1, 2, 3, 1}
- 7. (a) The transfer function of the system is given as

H (s) =
$$\frac{s^2 + s + 5}{s^3 + 5s^2 + 8s + 4}$$

Obtain the sate variable model.

(b) Using a suitable method obtain the state transition matrix e^{At} for the following

system
$$A = \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix}$$
.

(c) State properties of state transition matrix.

4

10

8

8

6

7

8

8