QP Code: 4770

(Three Hours)	80 Marks
N.B. (i) Question No. 1 is compulsory	
(ii) Attempt any Three Questions out of Five Questions	
(iii) Illustrate with figures whenever necessary	
(iv) Assume suitable data if necessary and state it clearly	
1(a) Define mass density	[2]
(b) State Pascal's law	(2)
(c) State Archimedies principle	(2)
(d) Explain the term meta-centric height	[2]
(e) What is specific gravity	[2]
(f) Define the term buoyancy	[2]
(g) What do you understand by total pressure and centre of pressure	[2]
(h) State Bernoulli's theorem	[2]
(i) How are weirs classified	[2]
(j) Define an orifice	[2]
2(a) Calculate the density, specific weight and weight of one litre of petrol of specific	ic gravity
0.7	[8]
 2(b) A vertical sided 1.5 m height tank is square in plan whose side is 1 m long. The contains oil of specific gravity 0.8 to a depth of 50 cm floating on 1m depth of water Determine: (i) Total pressure on one side of tank (ii) Height of centre of pressure above base 	er.
+	[12]
3(a) A gate 3m wide and 2m high separates a liquid of specific gravity 1.5 and heigh	
one side and water upto height of 1.5m on other side of gate. Find the resultant for	
on the gate and position of centre of pressure	[8]
3(b) A metallic body floats at the interface of mercury and water in such a way that	
volume is submerged in mercury and 70 % in water. Find the density of metallic b	ody [8]
3(c) What are the conditions of equilibrium of a floating body and submerged body	[4]

[TURN OVER

2	QP Code : 4770
4(a) A container having dimensions 7m x 2m and 2.5	om deep contains water 1.25m deep. The
container moves with an acceleration 3m/sec ² upto	a 200 inclined plane. Find the inclination
of water surface with horizontal.	[6]
4(b) What do you understand by the terms total accel	leration, convective acceleration and local
acceleration	[6]
4(c) What are the methods of describing fluid flow	[4]
4(d) The two velocity components for a flow field is	given. Find the third velocity component
so as to satisfy the continuity equation	[4]
$u = x^2y, v = y^2z$	
5(a) Derive Bernoulli's equation from Euler's equation	on of motion [6]
5(b) A horizontal venturimeter with inlet diameter 10	0 cm is used to measure the flow of oil of
sp.gr. 0.8. The discharge of oil through venturimet	er is 60 lit/sec. Find the reading of oil-
mercury differential manometer. Take C_d = 0.98	[6]
5(c) Find the speed of submarine moving in sea water	er for a deflection of 4 cm in a mercury
differential manometer which is connected to pito	t static tube. Take C _v = 1 and specific
gravity of sea water as 1.03	[4]
5(d) Explain classification of orifice	[4]
6(a) A suppressed rectangular weir is used to measur	re rate of flow in a stream 2m wide. The
head of water above the weir is 25 cm. the sill of r	notch is 50 cm above the stream bed.
Assuming Cd= 0.62. Find the discharge. Consider	velocity of approach [8]
6(b) An external cylindrical mouthpiece of diameter	20 cm is discharging water under a
constant head of 8m. Determine the discharge and	absolute pressure head of water at vena-
contracta. Take Cd= 0.855 and Cc = 0.62 for vena	- contracta. Atmospheric pressure head is

6(c) State the different devices that one can use to measure the discharge through a pipe [4]

10.3 m of water