01/06/2015

Q.P. Code: 4836

		(3 Hours) [Total Marks	: 80
N.B. :		 Question No. 1 is compulsory. Assume suitable data if necessary. Attempt any three questions out of the remaining five. 	
1.	(a) (b) (c)	Convert (121.2) ₃ into base 10. Represent (52) ₁₀ into Excess - 3 code and Gray code. Find the one's complement and two's complement of (57) ₁₀ .	2 2 2
	(d) (e) (f) (g) (h) (i)	Realize $y = AB + \overline{AB}$ using NAND gates only. Obtain hamming code for 1011. Convert $(126)_{10}$ to Octal, Hexcode. State demorgans law. Convert $(214.32)_{10}$ to binary. Perform binary subtraction using 2's complement for $(62)_{10}$ and $(99)_{10}$	2 2 2 2 2 4
2.	(a) (b)	Minimize the logic function using Quine-McCluskey method. $f(A,B,C,D) = \Sigma m (1,3,7,9,10,11,13,15)$ Implement the following expression using single 4:1 Mux. $f = (A,B,C,D) = \Sigma m (0,1,2,4,6,9,12,14)$	12
3.	(b)	Design a 4-input (A,B,C,D) digital circuit that will give at its output (X) a logic 1 only if the binary number formed at the input is between 2 and 9 (including). Simplify $Y = \overline{\left(A + \overline{A} B\right) \left(C + \overline{D}\right)}$ Design 1 bit comparator using logic gates.	10 5 5
4.	(a) (b)	A+BC+ABD+ABCD (i) Express in standard SOP (ii) Draw K-map for the equation. (iii) Minimize and realize using NAND gates only.	12
5.	(a) (b)		10 10
6.	Wri	(a) VHDL (b) Multivibrators (c) Gray code & Excess-3code (d) Johnson Ring Counter	20