

BE-ExTC Sem VIII (Rev) Adv. Microwave Engg. 14/5/15

QP Code: 8038

(3 Hours)

[Total Marks:100

- N.B.: (1) Question No.1 is compulsory.
 - (2) Make use of complete Smith chart wherever necessary.
 - (3) Solve any four questions from remaining six questions.
 - (4) Assume suitable data wherever required.
- 1.(a) Find S-parameters of two port series network with $Z = 100 \Omega$ and $Zo = 50\Omega$.
 - (b) Derive the expression of overall noise figure in three cascaded stages of amplifiers.
 - (c) Define stability. List the various criteria for stability.
 - (d) What are the characteristics of power amplifiers?
- 2. (a) A BJT with Ic = 30mA and V_{CE} = 10V is operated at a frequency of 1.0 $_{10}$ GHz in a 50 Ω system.

Its S-parameters are:

$$S_{11} = 0.73 \angle 175^{\circ};$$
 $S_{22} = 0.21 \angle -80^{\circ}$
 $S_{12} = 0.0;$ $S_{21} = 4.45 \angle 65^{\circ}$

Determine whether the transistor is unconditionally stable. If yes, calculate the optimum terminations.

Gs, max, GL, max and GTU, max.

- (b) Explain using suitable diagrams two methods of designing broad band amplifier.
- 3. (a) Determine stability of GaAs FET that has the following S-parameters at $_{10}$ 2GHz in a 50- Ω system both graphically and mathematically.

$$S = \begin{bmatrix} 0.89 \angle -60^{\circ} & 0.02 \angle 62^{\circ} \\ 3.1 \angle 123^{\circ} & 0.78 \angle -27^{\circ} \end{bmatrix}$$

(b) Derive the transducer power gain as:

$$G_{T} \frac{P_{L}}{P_{avg}} = \frac{|s_{21}|^{2} (1 - |\overline{s}|^{2}) (1 - |\overline{L}|^{2})}{|1 - \overline{s|in}|^{2} |1 - S_{22} \overline{L}|^{2}}$$

Set 18:04
(b)

RJ-Con.: 8961-15.

TURN OVER

10

QP Code: 8038

2

4. Design a transistor oscillator at 6GHz using an FET in CS configuration driving a 50 Ω load on drain side. The S parameters at 50 Ω are

$$S = \begin{bmatrix} 0.9 \angle 150^{\circ} & 0.2 \angle -15^{\circ} \\ 2.6 \angle 50^{\circ} & 0.5 \angle 105^{\circ} \end{bmatrix}$$

Calculate and plot output stability circle for

$$| |_{IN} | >> 1$$
, choose $|_{T}$ so that $|_{IN} | >> 1$

Design load and terminating networks.

- 5. (a) Discuss various mixer topologies. Compare performance of various topologies.
 - (b) Compare microwave amplifiers with microwave oscillators.
- 6. (a) A GaAs FET is biased for minimum noise figure and has following S parameters and noise parameters at 4GHz (Zo = 50Ω)

$$S = \begin{bmatrix} 0.6 \angle -60^{\circ} & 0.05 \angle 26^{\circ} \\ 1.9 \angle 81^{\circ} & 0.5 \angle -60^{\circ} \end{bmatrix}$$

Fmin = 1.6dB, $\sqrt{\text{opt}} = 0.62 \angle 100^{\circ}$, $R_N = 20\Omega$

Design an amplifier with 2dB noise figure and maximum gain compatible with this noise figure. Assume device is unilateral.

- (b) prove that scattering matrix is symmetrical and reciprocal.
- 7. Write short notes on:
 - (a) Noise figure test equipment
 (b) 1dB compression point

 5

5

5

- (c) Amplifier linearization methods
- (d) Single ended diode mixer.

RJ-Con.: 8961-15.

Course: B.E. (SEM.VIII) (ELECTRONICS & TELECOMMUNICATION ENGG.)(prog 758 To 772)

Q.P Code: 8038

Correction:

Q.no.(4)

Read AS: FET in Cg Configuration

Instead of: FET in Cs Configuration

Q.No.(4) is of 20 marks.

Q.No.(3)(b) (chk following img)

Query Update time: 14/05/2015 11:40 AM

NOTE: Take printouts & distribute them to concerned students.