10

TE-SEM-V-EE-EFW

OLD COURSE)	Q.P. Code:	3728
-------------	------------	------

(3 Hours) [Total Marks: 100

(2) (3)	Question No.1 is compulsory. Attempt any four questions out of remaining six questions. Assume any suitable data if necessary.	
(4)	Figures to the right indicate full marks.	
1. Attemp	t any four of the following:- State and explain Divergence theorem.	20
(b)	Prove that the curl of gradient of a scalar function is zero.	
(c)	Show that the electrostatic energy stored in parallel plate capacitor is given by $(1/2)$. CV^2	
(d)	Prove that static electric field is irrigational and the static magnetic field is solenoid.	
(e)	State and explain amperes circuital law.	
	$\overline{E} = -8xy \overline{a}_x - 4x^2\overline{a}_y + \overline{a}z$ v/m. Find the work done in carrying a 6 coulombs arge from A (1, 8, 5) to B (2,18, 6) along the path $y = 3x + 2$, $z = x + 4$.	10
(b) A u	miform line charge, $P_L = 25$ nc/m lies on the line $X = -3$, $Z = 4$ in free space. d \overline{E} in Cartesian components at the point P $(2, 15, 3)$	10
	rive an expression for the Electric Field Intensity due to an infinite sheet charge.	10
the	ven that $D = [(10x^3)/(3)]$. \overline{a}_x c/m², evaluate both sides of the divergence orem for volume of cube. 2m on an edge, centered at the origin and with edges allel to the axes.	10
	d the capacitance of a co-axial conductor of length I, where inner and outer radii r_1 of r_2 respectively.	10
Ass	= 0 volts for $r = 0.1$ m and $v = 100$ volts for $r = 2.0$ m in spherical co-ordinates, suming free space between the concentric spherical shells, find \overline{E} & D using place's equation.	10

5. (a) Using Biot-Savart law, find the magnetic field intensity due to an finite long straight

(b) State and explain Maxwell equation for time-varying fields.

filament placed along z- axis.

Q.P. Code: 3728

2

- 6. (a) The circular loop conduction lies in the z=0 plane, has a radius of 0.1m and resistance of 5.0 Ω . Given $B=0.20\sin 10^3$ t $\overline{a}_z(T)$, determine the current in the loop.
 - (b) A square filamentary loop 2 meters in side is placed in Z = 0 plane with its center at origin. If current of 10 A is passing through loop, Find H at origin.
- 7. (a) Define Poynting vector. Obtain the integral form of the Poynting theorem and explain 10 each of the terms.
 - (b) A lossy dielectric has $\mu_r = 1$, $\epsilon_r = 1$ and 6 = 20 mho/s at 15.9 MHz, 10 electromagnetic wave propagating through this medium. Find attenuation contrast α , phase constant β , velocity of propagation and intrinsic impedance of the medium.