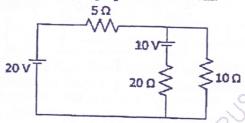
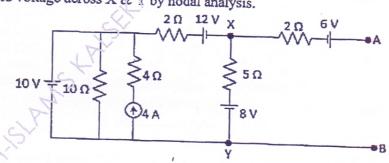
(OLD COURSE)

Q.P. Code: 3087


(3 Hours)

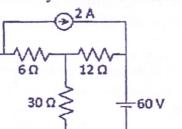
[Total Marks: 100


N.B.: (1) Question No.1 is compulsory.

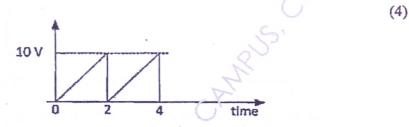
(2) Attempt any four out of remaining.

- a) The resistance of a motor winding increases from 70Ω at 25°C to 100Ω at 70°C. Find the resistance temperature coefficient at 0°C.
 - b) Find current through 20Ω by superposition theorem.

- c) Instantaneous wave equation for a voltage v=200 Sin(5000t 30°). Find (2) V_{rms}, Time period.
- d) Plot the graphs of current Vs frequency in RLC series circuit having (3) very small value of R, medium value of R and very high value of R.
- e) In a three phase star connected load, V_{Yb}=400∠ 80°. Find V_{RN}. Phase (2) sequence is RYB.
- f) For a single phase transformer of 10KVA, maximum efficiency occurs (3) at 8.16KVA load. If iron loss is 20 W. Find full load copper loss.
- g) Draw the phasor diagram of capacitor start induction run motor. h) Find ripple factor for half wave rectifier. (2)
- (2)a) Find voltage across X & Y by nodal analysis.

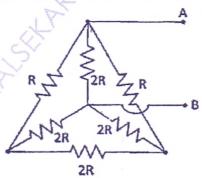

- b) if a voltage of v=260Sin(314t + 30°) V is being applied to an (6) impedance. A current of 22-15°A flows through the circuit. Find resistance, reactance and pf of the circuit.
- Draw the phasor diagram of transformer on lagging power factor load. (8)
- a) Derive the relation between line and phase quantities in three phase star (8) connected load.
 - b) Explain short circuit test to find equivalent circuit parameters of the (4) single phase transformer.
 - c) Explain production of rotating magnetic field in three phase induction (8)

(6)


Q.4 a) Calculate current in 12Ω resistance by the venin's theorem.

200 V

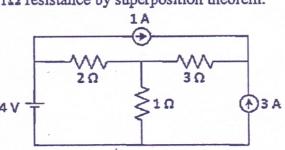
3Ω



b) Find V_{RMS}.

- c) Calculate the total power and readings of two wattmeters connected to (4) measure power in three phase balanced load if the reactive power is 15KVAR & load pf is 0.8 lag.
- d) Draw the input and output waveforms of full wave bridge rectifier and (5) find ripple factor, rectification efficiency.

b) Find power & power factor of choke coil and power factor of complete (5) circuit.


A 10KVA, 450V/120V, 50 Hz, single phase transformer gave following (8) results

OC test(LV side):- 120V, 4.2A, 80W

SC test(HV side):- 9.65V, 22.2A, 120W.

Calculate equivalent circuit parameters referred to primary, efficiency at 0.8 pf lag and maximum efficiency at 0.8 pf lag.

Q.6 a) Find current in 1Ω resistance by superposition theorem.

- b) A coil of 400Ω resistance & an inductor of 318µH is connected in (7) parallel with a capacitor and the circuit resonates at 1MHz. If a second capacitor of 23.5pF is now connected in parallel with first capacitor, Find the frequency at which the new circuit resonates.
- c) A three phase star connected load across 400V, 50Hz three phase supply (6) takes 10KW and a line current of 20A. Find the readings of two wattmeters connected to measure power in the circuit.
- Q.7 a) An alternating current of 50Hz frequency has a maximum value of (2) 100A. Calculate its value 1/600 seconds after the instant of current zero and increasing positively thereafter.
 - b) Two currents i₁& i₂ are meeting at a point. Find resultant current. (3) i₁= 10 Sin(ωt 30°)A & i₂= 5 Cos(ωt 70°)A
 - c) Find all day efficiency of a 500KVA transformer where full load copper (5) loss and iron loss are 4.5KW and 3KW respectively. During a day, it is loaded as follows

100000	August 1	
Loading in KVA	No., of Hours	pf
500 KVA	6	0.8
400 KVA	10	0.75
125 KVA	4	0.8
No load	4	

- d) Derive an expression for emf induced in DC motor. (5)
- e) Draw and explain input and output characteristics of CE configuration of (5) BJT.