

5

5

5

6

6

8

6

6

(OLD COURSE)

QP Code: 4596

(3 Hours)

[Total Marks: 100

- N.B. (1) Question no. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions
 - (3) Figures to the right indicate full marks.
- l. (a) Find A⁻¹ where

 $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ Also verify that A(adj A) = |A| . I

- (b) Find L{ $te^{-4t} \sin 3t$ }
- (c) Find the Fourier series of $f(x) = 1-x^2$ on the interval (-1, 1)
- (d) Find z-transform of $f(x) = \frac{\alpha^k}{k}$, $k \ge 1$
- 2. (a) Find L [sinh⁵t]
 - (b) Find the Fourier series for

$$f(x) = \begin{cases} -\pi & -\pi \le x < 0 \\ x & 0 \le x \le \pi \end{cases}$$

(c) Find the rank of

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 3 & -1 & 2 & 2 \\ 4 & 1 & 0 & -1 \\ 9 & 1 & 5 & 6 \end{bmatrix}$$

by reducing it to normal form.

3. (a) Find
$$L^{-1}\left\{\frac{\left(s^2+2s+3\right)}{\left(s^2+2s+2\right)\left(s^2+2s+5\right)}\right\}$$

by convolution theroem.

(b) Prove that every Hermitian matrix A can be written as P+ iQ where P is real symmetric and Q is real skew-symmetric matrix

[TURN OVER

Find half rage cosine series for $f(x) = (x-1)^2$ (c) where 0 < x < 1

8

Hence find
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 and $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$

4. (a) Solve $\frac{d^2y}{dt^2} + \frac{2dy}{dt} + y = 3te^{-t}$

Given y(0)=4, y'(0)=2 using Laplaces transformation

(b)

Prove that $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \left(\frac{3x^2 - 1}{2}\right)$

are arthogonal over (-1, 1)

- Find λ and μ such that the equations $x + 2y + \lambda z = 1$, $x + 2\lambda y + z = \mu$, $\lambda x + 2y + z = 1$ 8 (c) have (i) no solution (ii) only one solution (iii) infinite many solutions
- 5. (a) Find $L^{-1} \left\{ \tan^{-1} \frac{2}{s^2} \right\}$

6

6

- (b) Prove that $A = \frac{1}{3} \begin{bmatrix} -2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$ is orthogonal and hence find A^{-1}
- (c)

Find the Fourier Sine Transform of f(x) if

$$f(x) = 0 0 < x < a$$

$$= x a \le x \le b$$

$$= 0 x > b$$

6

8

8

- 6. (a) Prove that if A is a skew-symmetric matrix of odd order then A is singular
 - Obtain complex form of Fourier series of $f(x) = e^{ax}$ in $(-\pi, \pi)$, where a is not an integer. (b)
 - Find inverse z-transform of $F(z) = \frac{1}{(z-3)(z-2)}$ (c)

if ROC is (i) |z| < 2 (ii) 2 < |z| < 3 (iii) |z| > 3

7. (a) Find
$$L^{-1} \left\{ \frac{e^{4-3s}}{(s+4)^{5/2}} \right\}$$

6

If $f(k) = 4^k U(k)$ and $g(k) = 5^k U(k)$ then find the z - transform of f(k) * g(k)(b)

6 8

Obtain Fourier series for (c)

$$f(x) = x + \frac{\pi}{2} \qquad -\pi < x < 0$$

$$=\frac{\pi}{2}-x$$

$$=\frac{\pi}{2}-x$$
 $0 < x < \pi$

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

Also deduce that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$