(OLD COURSE)

14/5/15

Q.P. Code: 4677

(3 Hours) [Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from question no. 2 to 7.
- (3) All sub questions of any question must be answered togethter.
- 1. (a) Find L [Sin t Sin 3t sin 5t] 5
 - (b) Find z transformation of $\frac{a^k}{k}$, $k \ge 1$
 - (c) Show that every square matrix A can be uniquely expressed sum of hermitian matrix and skew-hermitian matrix.
 - (c) Find the fourier series of $f(x) = \left(\frac{\pi x}{2}\right)^2$ in the interval $0 \le x \le 2\pi$
- 2. (a) Show that $\int_{0}^{\infty} \frac{(\sin 2t + \sin 3t)}{te^{t}} dt = \frac{3\pi}{4}$
 - (b) Show that $A = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ +i\sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is unitary hence find A-1.
 - (c) Find the Fourier Expansion for $f(x) = \sqrt{1 \cos x}$ in $(0, 2\pi)$, hence deduce 8

$$\sum_{1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$$

- 3. (a) Solve $(D^2 + 2D + 5)$ $y = e^{-t} \sin t$ given y(0) = 0, y'(0) = 1
 - (b) Find the Fourier series of

$$f(x) = \cos x - \pi < x < 0$$

$$= \sin x \quad 0 < x < \pi$$

(c) Solve the equations by Gauss seidel method

$$23x + 4y - z = 32$$

 $2x + 17y + 4z = 35$
 $x + 3y + 10z = 24$

8

8

6

- 4. (a) P.T. $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \frac{3x^2 1}{2}$ are orthogonal 6
 - (b) Find the non-sigular matrices P and Q such that PAQ is normal. Where A is

given by
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$$

(c) Find the inverse Laplace Transformation

(i)
$$L^{-1} \left[log \left(\frac{S^2 + 16}{S^2 + 25} \right) \right]$$
 (ii) $L^{-1} \left[\frac{S + 4}{(S + 1)^2 (S - 1)} \right]$

- 5. (a) Find the inverse Z Transformation $f(z) = \frac{1}{(z-3)(z-2)}$
 - (b) Find the fourier series $f(x) = 2x - x^2$ $0 \le x \le 3$
 - (c) Investigate for what values of λ , μ the equation x + y + z = 6, x + 2y + 3z = 10 8 $x + 2y + \lambda z = \mu$ have
 - (i) no solution (ii) unique solution (iii) infinite number of solution
- 6. (a) Find z transformation of Z [a cos $k\alpha + b\sin k\alpha$] $k \ge 0$
 - (b) Find the complex form of Fourier series $f(x) = \cos h a x + \sin h a x$ in $[-\pi, \pi]$ 6
 - (c) Find the Laplace Transformation of

(i)
$$L\left[\frac{d}{dt}\left(\frac{1-\cos 2t}{t}\right)\right]$$
 (ii) $L\left[t\sin^3 t\right]$

- 7. (a) Find the Laplace transformation of $f(t) = E \ 0 \le t \le a$ = -E $0 \le t \le 2a$, f(t) = f(t + 2a)
 - (b) Obtain half range cos series

$$f(x) = x(\pi - x)$$
 $0 \le x \le \pi$ and hence deduce $\sum_{1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$