		(OLD COURSE)	19/	5/	15	tur
	w					logy
		(3 Hours)				ıacy
NT TO	715	[Total N	Iarks:	100		
N.B. :	(2)	Q. No.1 is compulsory Solve any four questions from remaining six questions. Assume suitable data if required. Draw neat sketches wherever required.			is.	
		Explain the working of Nozzle Flapper transducer. Write a short note on pyrometer. The assembly 50H8n7 represents a clearance fit. State True or	False	5 5		
	(d)	and justify Explain the principle of GO and NO-GO gauge		5		
2.	(a)	While measuring speed of turbine with stroboscope single line is were observed for stroboscope setting of 2400, 3800, and 6000		5	;	
	(b)	Calculate the speed of the turbine. Write short note on (Any Three) (i) McLeod Gauge (ii) Auto-Collimator	14.000 5	15		ı
		(iii) Piezoelectric Accelerometer. (iv) Toolmaker's microscope				_
	(a)	Explain generalized measurement system elements with block dia Describe its function with suitable example.	igram.	10	** ** **	v 5 –
((b)	State the principle of operation of comparator. Explain the principle and working of a pneumatic comparator.	nciple	10		
	(a)	Compare thermoelectric sensors on the basis of basic princip working, materials used, characteristic behavior, range of ope and their types available.		10		-
		State the working principle of LVDT with a neat sketch, indicate one elements of it. State in brief, two practical uses of LVD mechanical measurement. Indicate one similarity and one difference between LVDT and Piezoelectric transducer	DT in	10		-
		Define strain gauge. What is gauge factor? Derive an expression gauge factor of strain gauge.	on for	8		
	(E) (c)	Explain the method of employing sine bar for angle measurem Define static characteristics: i) Resolution iii Sensitivity iii) Precision iv) Accuracy v) l		7		

RJ-Con.: 9578-15.

[TURN OVER

2

V.	(a)	Liscuss the elements of surface roughness.
	(b)	What is meant by a "Best wire size"? Derive an expression for it. 5
	(c)	
		$S = \frac{3D^2P}{16t^2} N/m^2$
		where, D = Diameter in meter, t = Thickness in meter P = Applied pressure in N/m ²
		Calculate stress and maximum possible absolute error if
		D=0.02m ± 1 %
		$1 = 0.002 \text{ m} \pm 6 \times 10^{-6} \%$
		$P = 40 \times 10^{-4} \text{ N/m}^2 \pm 1 \%$
7.	(a)	A strain gauge is bonded to a beam 0.1 m long and has a cross-sectional area 4 cm ² . Young's modulus of elasticity for steel is 207 GN/m ² . The strain gauge has an unstrained resistance of 240 Ω and a gauge factor of 2.2. When a load is applied, the resistance of gauge changes by
		0.013 Calculate the change in length of the steel beam and the
		amount of force applied to the beam.
	(b)	Write short note on (Any Three) (i) Brigdeman gauge, (ii) Standards of measurement
		(iii) Use of slip gauges
		(iv) Load cell

RJ-Con.: 9578-15.