Sub :- PP-I

QP Code: 13457

(3 Hours)

[Total Marks: 70

V	В.:	: (1) All questions are compulsory.	
		(2) Draw neat labelled diagrams wherever necessary	
7	. (a	n) Write a note on super critical fluid state and give its applications.	
	(b	b) What is optical activity? Draw schematic diagram of polarimeter.	3
	(c	An aqueous solution containing 10% w/v of a compound has a boiling point	2
		of 100.149° C. What is its molecular weight?	3
	٠.	$(K_b \text{ for water} = 0.51)$	
	(d) Differentiate between :-	
		(i) Open system and closed system	4
		(ii) Reversible process and Irreversible process	
	(e)	Define the following:—	
		(i) Faraday's first law of electrolysis	3
		(ii) Specific conductance	
		(iii) Transport number	
	(a)	Explain the principle behind liquefaction of gases and write a note on aerosols	
		OR	4
		Explain the principle and method of liquefaction of gases by Linde's process.	
	(b)	Describe the concept of dielectric constant.	
	(c)	Derive the equation of $Cp - Cv = R$.	3
			4
	(a)	Give the difference between positive and negative deviations form Raoult's	
		law.	4.
	(b)	Give the various statements of second law of thermodynamics and discuss	
		efficiency of heat engine.	4
		OR	
	(b)	An engine operating between 200° C and 75° C takes 500J heat form a high	
		temperature reservoir. Assuming that there are no frictional loses, calculate	
		the work that can be done by this engine.	8
	(c)	The resistance of a 0.2N solution of a salt is found to be 1.5×10^3 ohms.	2
		Calculate the equivalent conductance of a solution. Cell constant = 1.15cm ⁻¹	3
	(a)	Derive the equation for deviation of real gases form ideal gas.	,
	(b)	Explain principle and working of Abbe's refractometer.	4
	(c)	Justify 'Depression in freezing point' is a colligative property.	3
		OR	4
2	(c)	Explain a method to determine the molecular weight of a solute by elevation	
	¥1	in boiling point.	

QP Code: 13457

5.	(a)	Write a short note on polymorphism.	
		What is osmosis? Explain Berkeley and Hartley's method for measurement	
		of osmotic pressure.	
	(c)	Explain Hess's law of constant heat summation.	
		OR	
	(c)	Define following:-	
	*	(i) Heat of formation	
		(ii) Heat of combustion	
		(iii) Heat of solution	
5.	(a)	Calculate the pressure of 0.5 mole of CO ₂ gas in a container of 1 liter capacity	
		at 27° C using the ideal gas equation and the van der waals equation.	
		$a = 3.608 \text{ liter}^2 \text{ atm/mole}^2$	
		b = 0.0428 liter / mole	
		R = 0.0821 liter atm / K mole	
	(b)	Explain principle of fractional distillation.	873
	(c)	Write a note on Gibb's free energy.	1
	(7)		~