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Preface 

 

 
This project work mainly contains the Analysis of Electric Power Distribution System of a 

large Nuclear Power Plant. The Nuclear Power Plant discussed in this report contains 

Pressurized Water Reactor (PWR). 

The Modular design scheme of PWR Nuclear Power Plant provides the redundancy to 

prevent the any common failure. Passive Safety System is Striking feature of this PWR 

Nuclear Power Plant which removes the decay heat when station blackout occurs. As the 

safety is very important issue in any nuclear power plant, Passive Safety System and 

Redundant System of plant provides the better safety for plant called as Defense in Depth. 

We, have involved in this project, have worked with commitment right from initialization 

of the project and continuing all the way till its completion. 

It may contain little errors, as there is always a scope for improvement. 
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INTRODUCTION OF PWR NULEAR POWER PLANT 

 

There have been a considerable number of nuclear reactor concepts proposed over the thirty 

years of applied nuclear power. A selected number of these have been developed to the extent 

that one or more plants have been built. Today, only three of these concepts are considered 

commercially viable. Two of these concepts are based on the use of uranium enriched in the 

isotope U-235 with light (or ordinary) water employed for cooling and neutron moderation. Of 

these two concepts, one is the pressurized water reactor or PWR developed by Westinghouse. 

The other is the boiling water reactor or BWR developed by General Electric. The third concept 

is based on the use of natural uranium with heavy-water (water enriched in the deuterium 

isotope) for cooling and moderation. This reactor concept has been principally developed and 

applied by Atomic Energy of Canada Limited.  

 

Worldwide, of the over 400 nuclear power plants operating or under construction, over 75 

percent of these are of the light-water design with over 65 percent of the light-water plants being 

PWRs furnished by Westinghouse and its current or original licensees. The fundamental 

distinction between the PWR and the BWR is that in the latter the coolant moderator is allowed 

to boil with the resulting steam passed directly to the turbine-generator, whereas in the PWR the 

coolant moderator is maintained above saturation pressure such that no significant amount of 

boiling occurs in the reactor. The necessary steam for the turbine generator is produced in a 

steam generator where the reactor heat is transferred to a secondary water coolant at lower 

pressure. There are of course a considerable number of other less fundamental differences as 

well.  

 

The importance of these differences has been examined in a large number of utility evaluations 

with the clearest and simplest overall result being the current commercial dominance of the PWR 

design. This document describes the basic design and operating characteristics of a 

Westinghouse PWR plant. The design is available in five ratings of approximately 600 

megawatts electrical (MWe), 900 MWe, 1000 MWe, 1100 MWe, and 1200 MWe. (The exact 

ratings of course reflect a number of specific constraints such as heat sink characteristics.) The 

different ratings are attained through use of either two, three or four reactor coolant piping loops, 
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each loop comprised of a steam generator, reactor coolant pump, or interconnecting piping. The 

loops are each connected to a reactor vessel sized to contain nuclear cores comprised of fuel 

elements of either 12 or 14 foot length with from121 to 193 assemblies. 

 

 In this manner the full range of utility requirements can be satisfied while maximizing the use of 

standard components The description given in this document is based on a four-loop plant with a 

twelve foot core (a Model 412 plant) having an electrical capacity of some 1100 MWe. The 

descriptions generally apply equally to the other ratings when proper consideration is given to 

the number of reactor coolant loops and/or core length. For all ratings, the functional system 

requirements and operating characteristics are essentially the same. Where system or plant 

operation is described, the actions and sequences are based on current Westinghouse 

recommendations. 
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PRESSURIZED WATER REACTOR DESIGN CONCEPT 

 

A simplified schematic of the Westinghouse PWR plant design is shown in Figure 1-1. The total 

power cycle may be considered to be comprised of three generally independent closed cycles or 

loops: primary, secondary, and tertiary. The primary loop contains the heat source consisting of a 

nuclear fuel core positioned within a reactor vessel where the energy resulting from the 

controlled fission reaction is transformed into sensible heat in the coolant moderator. The coolant 

is pumped to the steam generator where the heat is transferred to a secondary loop through a 

number of U-type tubes. The reactor coolant then returns back to the reactor vessel to continue 

the process. An electrically heated pressurizes connected to the loop maintains a pressure above 

the saturation pressure so that bulk boiling does not occur. The secondary loop is the heat 

utilization circuit where dry steam produced in the steam generator flows to a turbine-generator 

where it is expanded to convert thermal energy into mechanical energy and hence electrical 

energy .The expanded steam exhausts to a condenser where the latent heat of vaporization is 

transferred to the cooling system and is condensed. The condensate is pumped back to the steam 

generator to continue the cycle. 

 

The tertiary loop is the heat rejection loop where the latent heat of vaporization is rejected to the 

environment through the condenser cooling water. Depending on the specific site, this heat is 

released to a river, lake, ocean, or cooling tower system with the latter becoming the more 

Common within the United States. Use of a steam generator to separate the primary loop from 

the secondary loop largely confines the radioactive materials to a single building during normal 

power operation and eliminates the extensive turbine maintenance problems that would result 

from radioactively contaminated steam. For general discussion purposes, a nuclear power plant 

can be considered to be made up of two major areas: a nuclear island and a turbine island. These 

are described below. Each is comprised of fluid, electrical, instrumentation and control systems; 

electrical and mechanical components; and the buildings or structures housing them. There are 

also a number of shared fluids, electrical, instrumentation and control systems, as well as other 

areas of interconnection or interface. 
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CHAPTER1 

 
1 PWR Nuclear Power Plant Analysis 

 

1.1 AC Power System 
The onsite ac power system is a non-Class 1E system comprised of a normal, preferred, 

maintenance and standby power supplies. The normal, preferred, and maintenance power 

supplies are included in the main ac power system. The standby power is included in the onsite 

standby power system. The Class 1E and non-Class 1E 208/120 Vac instrumentation power 

supplies as a part of uninterruptible power supply in the dc power systems.  

 

1.1.1 Onsite AC Power System  
 The main ac power system is a non-Class 1E system and does not perform any safety-

related functions. It has nominal bus voltage ratings of 6.9 kV, 480 V, 277 V, 208 V, and 120 V.   

  During power generation mode, the turbine generator normally supplies electric power to 

the plant auxiliary loads through the unit auxiliary transformers. The plant is designed to sustain 

a load rejection from 100 percent power with the turbine generator continuing stable operation 

while supplying the plant house loads. The load rejection feature does not perform any safety 

function.  

  During plant startup, shutdown, and maintenance the generator breaker remains open. 

The main ac power is provided by the preferred power supply from the high-voltage switchyard 

(switchyard voltage is site-specific) through the plant main step-up transformers and two unit 

auxiliary transformers. Each unit auxiliary transformer supplies power to about 50 percent of the 

plant loads.  

  A maintenance source is provided to supply power through two reserve auxiliary 

transformers.  

  The maintenance source and the associated reserve auxiliary transformers primary 

voltage are site specific. The reserve auxiliary transformers are sized so that it can be used in 

place of the unit auxiliary transformers. 
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  The two unit auxiliary transformers have two identically rated 6.9 kV secondary 

windings. The third unit auxiliary transformer is a two winding transformer sized to 

accommodate the electric boiler and site-specific loads. Secondary’s of the auxiliary 

transformers are connected to the 6.9 kV switchgear buses by no segregated phase buses.  

 

The primary of the unit auxiliary transformer is connected to the main generator isolated phase 

bus duct tap. The 6.9 kV switchgear designation, location, connection, and connected loads are 

shown in. The buses tagged with odd numbers (ES1, ES3, etc.) are connected to one unit 

auxiliary transformer and the buses tagged with even numbers (ES2, ES4, etc.) are connected to 

the other unit auxiliary transformer.  

 

ES7 is connected to the third unit auxiliary transformer. 6.9 kV buses ES1-ES6 are provided with 

an access to the maintenance source through normally open circuit breakers connecting the bus 

to the reserve auxiliary transformer. ES7 is not connected to the maintenance source. Bus 

transfer to the maintenance source is manual or automatic through a fast bus transferscheme. 

 

The arrangement of the 6.9 kV buses permits feeding functionally redundant pumps or groups of 

loads from separate buses and enhances the plant operational flexibility. The 6.9 kV switchgear 

powers large motors and the load center transformers. There are two switchgear (ES1 and ES2) 

located in the annex building, and five (ES3, ES4, ES5, ES6, and ES7) in the turbine building.  

The main step up transformers have protective devices for sudden pressure, neutral overcurrent, 

and differential current. The unit auxiliary transformers have protective devices for sudden 

pressure, overcurrent, differential current, and neutral overcurrent. The isophase bus duct has 

ground fault protection. If these devices sense a fault condition the following actions will be 

automatically taken: 

  Trip high-side (grid) breaker 

  Trip generator breaker 

  Trip exciter field breaker 

  Trip the 6.9 kV buses connected to the faulted transformer 

  Initiate a fast bus transfer of ES1-ES6 6.9kV buses ES1-ES6. 
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The reserve auxiliary transformers have protective devices for sudden pressure, overcurrent, and 

differential current and neutral overcurrent. The reserve auxiliary transformers protective devices 

trip the reserve supply breaker and any 6.9 kV buses connected to the reserve auxiliary 

transformers.  

 

The onsite standby power system powered by the two onsite standby diesel generators supplies 

power to selected loads in the event of loss of normal, and preferred ac power supplies followed 

by a fast bus transfer to the reserve auxiliary transformers. Those loads that are priority loads for 

defense-in-depth functions based on their specific functions (permanent nonsafety loads) are 

assigned to buses ES1 and ES2.  

 

These plant permanent nonsafety loads are divided into two functionally redundant load groups 

(degree of redundancy for each load is described in the sections for the respective systems). Each 

load group is connected to either bus ES1 or ES2. Each bus is backed by a non-Class 1E onsite 

standby diesel generator. In the event of a loss of voltage on these buses, the diesel generators 

are automatically started and connected to the respective buses.  

 

In the event where a fast bus transfer initiates but fails to complete, the diesel generator will 

start on an under voltage signal; however, if a successful residual voltage transfer occurs, the 

diesel generator will not be connected to the bus because the successful residual voltage transfer 

will provide power to the bus before the diesel connection time of 2 minutes. The source 

incoming breakers on switchgear ES1 and ES2 are interlocked to prevent inadvertent connection 

of the onsite standby diesel generator and preferred/maintenance ac power sources to the 6.9 kV 

buses at the same time. 

 

 The diesel generator, however, is capable of being manually paralleled with the preferred or 

reserve power supply for periodic testing. Design provisions protect the diesel generators from 

excessive loading beyond the design maximum rating, should the preferred power be lost during 

periodic testing.  
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The control scheme, while protecting the diesel generators from excessive loading, does not 

compromise the onsite power supply capabilities to support the defense-in-depth loads. The 480 

V load centers supply power to selected 460 V motor loads and to motor control centers. Bus tie 

breakers are provided between two 480 V load centers each serving predominantly redundant 

loads. This intertie allows restoration of power to selected loads in the event of a failure or 

maintenance of a single load center transformer.  

 

The bus tie breakers are interlocked with the corresponding bus source incoming breakers so that 

one of the two bus source incoming breakers must be opened before the associated tie breaker is 

closed. Load center, associated with ES-7, does not have an equivalent match. The 480 V motor 

control centers supply power to 460 V motors not powered directly from load centers, while the 

480/277 V, and 208/120 V distribution panels provide power for miscellaneous loads such as 

unit heaters, space heaters, and lighting system. The motor control centers also provide ac power 

to the Class 1E battery chargers for the Class 1E dc power system 

 

 

 

1.1.2 Electric Circuit Protection 
 

Protective relay schemes and direct acting trip devices on circuit breakers: 

 Provide safety of personnel 

  Minimize damage to equipment 

  Minimize system disturbances 

  Isolate faulted equipment and circuits from unfaulted equipment and circuits 

  Maintain (selected) continuity of the power supply  Major types of protection systems 

employed for AP1000 include the following: 
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1.1.3 Medium Voltage Switchgear Differential Relaying 
 

Each medium voltage switchgear bus is provided with a bus differential relay to protect against a 

bus fault. The actuation of this relay initiates tripping of the source incoming circuit breaker and 

all branch circuit load breakers. The differential protection scheme employs 

High speed relays. Motors rated 1500 hp and above are generally provided with a high dropout 

overcurrent relay for differential protection. 

 

 

1.1.4 Over current Relaying 
 

To provide backup protection for the buses, the source incoming circuit breakers are equipped 

with an inverse time overcurrent protection on each phase and a residually connected inverse 

time ground overcurrent protection. Each medium voltage motor feeder breaker is equipped with 

a motor protection relay which provides protection against various types of faults (phase and 

ground) and abnormal conditions such as locked rotor and phase unbalance. Motor overload 

condition is annunciated in the main control room. Each medium voltage power feeder to a 480 

V load center has a multifunction relay. The relay provides overcurrent protection on each phase 

for short circuit and overload, and an instantaneous overcurrent protection for ground fault. 

 

 

1.1.5 Under voltage Relaying 
 

Medium voltage buses are provided with a set of three under voltage relays which trip motor 

feeder circuit breakers connected to the bus upon loss of bus voltage using two-out-of three logic 

to prevent spurious actuation. In addition, a protective device is provided on the line side of 

incoming supply breakers of buses ES1 and ES2 to initiate an alarm in the main control room if a 

sustained low or high voltage condition occurs on the utility supply system. The alarm is 

provided so that the operator can take appropriate corrective measures. 
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1.1.6 480-V Load Centers 
Each motor-feeder breaker in load centers is equipped with a trip unit which has long time, 

instantaneous, and ground fault tripping features. Overload condition of motors is annunciated in 

the main control room. 

The circuit breakers feeding the 480V motor control centers and other   

time, short time, and ground fault tripping features. Each load center bus has an under voltage 

relay which initiates an alarm in the main control room upon loss of bus voltage. Load center 

transformers have transformer winding temperature relays which give an alarm on transformer 

overload. 

 

1.1.7 480-V Motor Control Center 
Motor control center feeders for low-voltage (460 V) motors have molded case circuit breakers 

(magnetic or motor circuit protectors) and motor starters. Motor starters are provided with 

thermal units (overload heaters) or current sensors. Other feeders have molded case circuit 

breakers with thermal and magnetic trip elements for overload and short circuit protection. Non-

Class 1E ac motor-operated valves are protected by thermal overload devices. Thermal overload 

devices are selected and sized so as to provide the necessary protection while minimizing 

the probability of spurious interruptions of valve actuation. 
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1.1.8 Standby AC Power Supply 

 

1.1.8.1 Onsite Standby Diesel Generators 

 
Two onsite standby diesel generator units, each furnished with its own support subsystems, 

provide power to the selected plant non safety-related ac loads. Power supplies to each diesel 

generator subsystem components are provided from separate sources to maintain reliability and 

operability of the onsite standby power system. These onsite standby diesel generator units and 

their associated support systems are classified as AP1000 Class D, defense-in-depth systems. 

The onsite standby diesel generator function to provide a backup source of electrical power to 

Onsite equipment needed to support decay heat removal operation during reduced reactor coolant 

system inventory, mid loop, operation is identified as an important non safety-related function 

each diesel generator unit is an independent self-contained system complete with necessary 

support subsystems that include: 

 

 Diesel engine starting subsystem 

 Combustion air intake and engine exhaust subsystem 

 Engine cooling subsystem 

 Engine lubricating oil subsystem 

 Engine speed control subsystem 

 Generator, exciter, generator protection, monitoring instruments, and controls subsystems 
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1.1.8.2 Ancillary ac Diesel Generators 

 
Power for Class 1E post-accident monitoring, MCR lighting, MCR and divisions B and C I&C 

room ventilation and for refilling the PCS water storage tank and the spent fuel pool when no 

other sources of power are available is provided by two ancillary ac diesel generators located in 

the annex building. The ancillary generators are not needed for refilling the PCS water storage 

tank, spent fuel pool makeup, post-accident monitoring or lighting for the first 72 hours 

following a loss of all other ac sources. 

The fuel for the ancillary generators is stored in a tank located in the same room as the 

generators. The fuel tank, piping, and valves are analyzed to show that they withstand an SSE. 

The tank includes provisions for venting to the outside atmosphere and for refilling from a truck 

or other mobile source of fuel. The tank is seismic Category II and holds sufficient fuel for 4 

days of operation. 

 
Temporary Electric Power One Line Diagram 
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1.1.8.3 Onsite Standby Power System Performance 

 
The onsite standby power system provides reliable ac power to the various plant system 

electrical loads shown these loads represent system components that enhance an orderly plant 

shutdown under emergency conditions.  

 

Additional loads that are for investment protection can be manually loaded on the standby power 

supply after the loads required for orderly shutdown have been satisfied. The values listed in the 

"Operating Load (kW)". Both the diesel engine and the associated generator are rated based on 

104°F ambient temperature at 1000 ft elevation as standard site conditions. 

 

 The selected unit rating has a design margin to accommodate possible de rating resulting from 

other site conditions. The diesel generator unit is able to reach the rated speed and voltage and be 

ready to accept electrical loads within 120 seconds after a start signal. Each generator has an 

automatic load sequencer to enable controlled loading on the generator. The automatic load 

sequencer connects selected loads at predetermined intervals. This feature allows recuperation of 

generator voltage and frequency to rated values prior to the connection of the next load. 

 

To enable periodic testing, each generator has synchronizing equipment at a local panel as well 

as in the main control room. 
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1.1.9 Electrical Equipment Layout 
 

The main ac power system distributes ac power to the reactor, turbine, and balance of plant 

(BOP) auxiliary electrical loads for startup, normal operation, and normal/emergency shutdown. 

The medium voltage switchgear ES1 and ES2 are located in the electrical switchgear rooms 1 

and 2 of the annex building. The incoming power is supplied from the unit auxiliary transformers 

ET2A and ET2B (X windings) via non segregated buses.  

 

The non segregated buses are routed from the transformer yard to the annex building in the most 

direct path practical. The switchgear ES3, ES4, ES5, and ES6 are located in the turbine building 

electrical switchgear rooms. The incoming power is supplied from the unit auxiliary transformers 

ET2A and ET2B  (Y windings) via non segregated buses to ES3 and ES4 and from ET2A and 

ET2B (X windings) to ES5 and ES6. Switchgear ES7 is located in the auxiliary boiler room in 

the turbine building.  

 

The Class 1E medium voltage circuit breakers, ES31, ES32, ES41, ES42, ES51, ES52, ES61, 

and ES62, for four reactor coolant pumps are located in the auxiliary building. The 480 V load 

centers are located in the turbine building electrical switchgear rooms 1 and 2 and in the annex 

building electrical switchgear rooms 1 and 2 based on the proximity of loads and the associated 

6.9 kV switchgear. 

 

 Load center 71 is located in the auxiliary boiler room in the turbine building. The 480 V motor 

control centers are located throughout the plant to effectively distribute power to electrical loads. 

The load centers and motor control centers are free standing with top or bottom cable entry and 

front access. The number of stacks/cubicles varies for each location. 
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AC Power Station Single Line Diagram  
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1.1.10 Grounding System 
The grounding system consists of the following 

Four subsystems: 

  Station grounding grid 

  System grounding 

  Equipment grounding 

  Instrument/computer grounding 

 

The station grounding grid subsystem consists of buried, interconnected bare copper conductors 

and ground rods (Copper weld) forming a plant ground grid matrix. The subsystem will maintain 

a uniform ground potential and limit the step-and-touch potentials to safe values under all fault 

conditions. 

 

The system grounding subsystem provides grounding of the neutral points of the main generator, 

main step-up transformers, auxiliary transformers, load center transformers, and onsite standby 

Diesel generators. The main and diesel generator neutrals will be grounded through grounding 

transformers providing high-impedance grounding. The main step-up and load center 

transformer Neutrals will be grounded solidly.  

 

The auxiliary (unit and reserve) transformer secondary winding neutrals will be resistance 

grounded. The equipment grounding subsystem provides grounding of the equipment enclosures, 

metal structures, metallic tanks, ground bus of switchgear assemblies, load centers, MCCs, and 

control Cabinets with two ground connections to the station ground grid. The 

instrument/computer grounding subsystem provides plant instrument/computer grounding 

through separate radial grounding systems consisting of isolated instrumentation ground buses 

and Insulated cables. The radial grounding systems are connected to the station grounding grid at 

one point only and are insulated from all other grounding circuits. 
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1.1.11 Lightning Protection 

 
The lightning protection system, consisting of air terminals and ground conductors, will be 

provided for the protection of exposed structures and buildings housing safety-related and fire 

protection equipment in accordance with NFPA 780.Also, lightning arresters are provided in 

each phase of the transmission lines and at the high-voltage terminals of the outdoor 

transformers.  

 

The isophase bus connecting the main generator and the main transformer and the medium-

voltage switchgear is provided with lightning arresters. In addition, surge suppressors are 

provided to protect the plant instrumentation and monitoring system from lightning-induced 

surges in the signal and power cables connected to devices located outside.  

 

Direct-stroke lightning protection for facilities is accomplished by providing a low-impedance 

path by which the lightning stroke discharge can enter the earth directly. The direct-stroke 

lightning protection system, consisting of air terminals, interconnecting cables, and down 

conductors to ground, are provided external to the facility in accordance with the guidelines 

included in NFPA 780.  

 

The system is connected directly to the station ground to facilitate dissipation of the large current 

of a direct lightning stroke. The lightning arresters and the surge suppressors connected directly 

to ground provide a low-impedance path to ground for the surges caused or induced by lightning. 

Thus, fire or damage to facilities and equipment resulting from a lightning stroke is avoided. 
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1.1.12 Inspection and Testing 
 

Preoperational tests are conducted to verify proper operation of the ac power system. The 

preoperational tests include operational testing of the diesel load sequencer and diesel generator 

capacity testing. 

 

 

 

1.1.12.1 Diesel Load Sequencer Operational Testing 
 

The load sequencer for each standby diesel generator is tested to verify that it produces the 

appropriate sequencing signals within five (5) seconds of the times The five second margin is 

sufficient for proper diesel generator transient response. 

 

 

 

1.1.12.2 Standby Diesel Generator Capacity Testing 
 

Each standby diesel generator is tested to verify the capability to provide 4000 kW while 

maintaining the output voltage and frequency within the design tolerances of 6900±10% Vac and 

60±5% Hz. The 4000 kW capacity is sufficient to meet the loads The test duration will be the 

time required to reach engine temperature equilibrium plus 2.5 hours. This duration is sufficient 

to demonstrate long-term capability. 
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1.2 DC Power Systems 

 

 Description 

 
The plant dc power system is comprised of independent Class 1E and non-Class 1E dc power 

systems. Each system consists of ungrounded stationary batteries, dc distribution equipment, and 

uninterruptible power supply (UPS).  

 

The Class 1E dc and UPS system provides reliable power for the safety-related equipment 

required for the plant instrumentation, control, monitoring, and other vital functions needed for 

shutdown of the plant. In addition, the Class 1E dc and UPS system provides power to the 

normal and emergency lighting in the main control room and at the remote shutdown 

workstation. 

 

 The Class 1E dc and UPS system is capable of providing reliable power for the safe shutdown of 

the plant without the support of battery chargers during a loss of all ac power sources coincident 

with a design basis accident (DBA).  

 

The system is designed so that no single failure will result in a condition that will prevent the 

safe shutdown of the plant. The non-Class 1E dc and UPS system provides continuous, reliable 

electric power to the plant non-Class 1E control and instrumentation loads and equipment that 

are required for plant operation and investment protection and to the hydrogen igniters located 

inside containment. Operation of the non-Class 1E dc and UPS system is not required for nuclear 

safety. 
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1.2.1 Class 1E DC and UPS System 
 

1.2.1.1 Class 1E DC Distribution 
 

The Class 1E dc components are housed in seismic Category I structures. For system 

configuration and equipment rating, see Class 1E dc one-line diagram, Nominal ratings of 

major Class 1E dc equipment There are four independent, Class 1E 250 Vdc divisions, A, B, 

C, and D. Divisions A and D are each comprising one battery bank, one switchboard, and one 

battery charger. 

 

 The battery bank is connected to Class 1E dc switchboard through a set of fuses and a 

disconnect switch. Divisions B and C are each composed of two battery banks, two 

switchboards, and two battery chargers. The first battery bank in the four divisions, 

designated as 24-hour battery bank, provides power to the loads required for the first 24 

hours following an event of loss of all ac power sources concurrent with a design basis 

accident (DBA).  

 

The second battery bank in divisions B and C, designated as 72-hour battery bank, is used for 

those loads requiring power for 72 hours following the same event. Each switchboard 

connected with a 24-hour battery bank supplies power to an inverter, a 250 Vdc distribution 

panel, and a 250 Vdc motor control center. 

 

 Each switchboard connected with a 72-hour battery bank supplies power to an inverter. No 

load shedding or load management program is needed to maintain power during the required 

24-hour safety actuation period. A single spare battery bank with a spare battery charger is 

provided for the Class 1E dc and UPS system.  

 

In the case of a failure or unavailability of the normal battery bank and the battery charger, 

permanently installed cable connections allow the spare to be connected to the affected bus 

by plug-in locking type disconnect along with kirk-key interlock switches.  
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The plug-in locking type disconnect and kirk-key interlock switches permit connection of 

only one battery bank and battery charger at a time so that the independence of each battery 

division is preserved.  

 

The spare battery and the battery charger can also be utilized as a substitute when offline 

testing, maintenance, and equalization of an operational battery bank are desired. Each 

battery bank, including the spare, has a battery monitor system that detects battery open 

circuit conditions and monitors battery voltage.  

 

The battery monitor provides a trouble alarm in the main control room. The battery monitors 

are not required to support any safety-related function. Monitoring and alarming of dc current 

and voltages are through the plant control system which includes a battery discharge rate 

alarm. AP1000 generally uses fusible disconnect switches in the Class 1E dc system.  

 

If molded-case circuit breakers are used for dc applications, they will be sized to meet the dc 

interrupting rating requirements. The Class 1E dc switchboards employ fusible disconnect 

switches and have adequate short circuit and continuous-current ratings. The main bus bars 

are braced to withstand mechanical forces resulting from a short-circuit current. Fused 

transfer switch boxes, equipped with double pole double throw transfer switches, are 

provided to facilitate battery testing, and maintenance 
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Class 1E DC System One Line Diagram 
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1.2.1.2 Class 1E Uninterruptible Power Supplies 
 

The Class 1E UPS provides power at 208 Y/120 Vac to four independent divisions of Class 

1E instrument and control power buses. Divisions A and D each consist of one Class 1E 

inverter associated with an instrument and control distribution panel and a backup voltage 

regulating transformer with a distribution panel.  

 

The inverter is powered from the respective 24-hour battery bank switchboard. Divisions B 

and C each consist of two inverters, two instrument and control distribution panels, and a 

voltage regulating transformer with a distribution panel. 

 

 One inverter is powered by the 24-hour battery bank switchboard and the other, by the 72-

hour battery bank switchboard. For system configuration and equipment rating. The nominal 

ratings of the Class 1E inverters and the voltage regulating transformers. Under normal 

operation, the Class 1E inverters receive power from the associated battery bank. If an 

inverter is inoperable or the Class 1E 250 Vdc input to the inverter is unavailable, the power 

is transferred automatically to the backup ac source by a static transfer switch featuring a 

make-before-break contact arrangement. 

 

 The backup power is received from the diesel generator backed non-Class 1E 480 Vac bus 

through the Class 1E voltage regulating transformer. In addition, a manual mechanical 

bypass switch is provided to allow connection of backup power source when the inverter is 

removed from service for maintenance. In order to supply power during the post-72-hour 

period following a design basis accident, provisions are made to connect a ancillary ac 

generator to the Class 1E voltage regulating transformers (divisions B and C only).  

 

This powers the Class 1E post-accident monitoring systems and the lighting in the main 

control room and ventilation in the MCR and divisions B and C I&C rooms.  The non-Class 

1E dc and UPS system consists of the electric power supply and distribution equipment that 

provide dc and uninterruptible ac power to the plant non-Class 1E dc and ac loads that are 

critical for plant operation and investment protection and to the hydrogen igniters located 
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inside containment. The non-class 1E dc and UPS system is comprised of two subsystems 

representing two separate power supply trains.  

 

The subsystems are located in separate rooms in the annex building each of the EDS1 and 3, 

and 2 and 4 subsystems consists of separate dc distribution buses. These two buses can be 

connected by a normally open circuit breaker to enhance the power supply source 

availability. Each dc subsystem includes battery chargers, stationary batteries, dc distribution 

equipment, and associated monitoring and protection devices. 

 

 DC buses 1, 2, 3, and provide 125 Vdc power to the associated inverter units that supply the 

ac power to the non-Class 1E uninterruptible power supply ac system. An alternate regulated 

ac power source for the UPS buses is supplied from the associated regulating transformers. 

DC bus 5 supplies large dc motors. This configuration isolates the large motors.  

 

The onsite standby diesel generator backed 480 Vac distribution system provides the normal 

ac power to the battery chargers. Industry standard stationary batteries that are similar to the 

Class 1E design are provided to supply the dc power source in case the battery chargers fail 

to supply the dc distribution bus system loads.  

 

The batteries are sized to supply the system loads for a period of at least two hours after loss 

of all ac power sources. The dc distribution switchboard houses the dc feeder protection 

device, dc bus ground fault detection, and appropriate metering.  

 

The component design and the current interrupting device selection follow the circuit 

coordination principles. Each of the EDS1 through 4 non-Class 1E dc distribution subsystem 

bus has provisions to allow the connection of a spare non-Class 1E battery charger should its 

non-Class 1E battery charger be unavailable due to maintenance, testing, or failure. EDS5 

does not require this capability because the only load on the charger is the battery.  
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The non-Class 1E dc system uses the Class 1E spare battery bank as a temporary replacement 

for any primary non-Class 1E battery bank. In this design configuration, the spare Class 1E 

battery bank would be connected to the non-Class 1E dc bus, but could not simultaneously 

supply Class 1E safety loads not perform safety-related functions.  

 

For EDS1 through EDS4, this is accomplished by opening the disconnect switch between the 

two 125 Vdc battery cell strings, which together, comprise the 250 Vdc spare battery. 

Additionally, the design includes two current interrupting devices placed in series with the 

main feed from the spare battery that are fault-current activated. 

 

 This will preserve the spare Class 1E battery integrity should the non-Class 1E bus 

experience an electrical fault. This arrangement will not degrade the electrical independence 

of the Class 1E safety circuits. 
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Class 1E UPS One Line Diagram 
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1.2.2 Non-Class 1E DC and UPS System 
 

The non-Class 1E dc and UPS system consists of the electric power supply and distribution 

equipment that provide dc and uninterruptible ac power to the plant non-Class 1E dc and ac loads 

that are critical for plant operation and investment protection and to the hydrogen igniters located 

inside containment.  

 

The non-class 1E dc and UPS system is comprised of two subsystems representing two separate 

power supply trains. The subsystems are located in separate rooms in the annex building. Each of 

the EDS1 and 3, and 2 and 4 subsystems consist of separate dc distribution buses. These two 

buses can be connected by a normally open circuit breaker to enhance the power supply source 

availability. Each dc subsystem includes battery chargers, stationary batteries, dc distribution 

equipment, and associated monitoring and protection devices.  

 

DC buses 1, 2, 3, and 4 provide 125 Vdc power to the associated inverter units that supply the ac 

power to the non-Class 1E uninterruptible power supply ac system. An alternate regulated ac 

power source for the UPS buses is supplied from the associated regulating transformers. DC bus 

5 supplies large dc motors. This configuration isolates the large motors. 

 

The onsite standby diesel generator backed 480 Vac distribution system provides the normal ac 

power to the battery chargers. Industry standard stationary batteries that are similar to the Class 

1E design are provided to supply the dc power source in case the battery chargers fail to supply 

the dc distribution bus system loads. 

 

 The batteries are sized to supply the system loads for a period of at least two hours after loss of 

all ac power sources. The dc distribution switchboard houses the dc feeder protection device, dc 

bus ground fault detection, and appropriate metering. The component design and the current 

interrupting device selection follow the circuit coordination principles.  

 

 

 



Analysis of Electric Power Distribution System of a large Nuclear Power Plant 
 

AIKTC Page 28 
 

Each of the EDS1 through 4 non-Class 1E dc distribution subsystem bus has provisions to allow 

the connection of a spare non-Class 1E battery charger should its non-Class 1E battery charger 

be unavailable due to maintenance, testing, or failure.  

 

EDS5 does not require this capability because  the only load on the charger is the battery. The 

non-Class 1E dc system uses the Class 1E spare battery bank as a temporary replacement for any 

primary non-Class 1E battery bank. In this design configuration, the spare Class 1E battery bank 

would be connected to the non-Class 1E dc bus, but could not simultaneously supply Class 1E 

safety loads nor perform safety-related functions.  

 

For EDS1 through EDS4, this is accomplished by opening the disconnect switch between the 

two 125 Vdc battery cell strings, which together, comprise the 250 Vdc spare battery. 

Additionally, the design includes two current interrupting devices placed in series with the main 

feed from the spare battery that are fault-current activated. This will preserve the spare Class 1E 

battery integrity should the non-Class 1E bus experience an electrical fault. This arrangement 

will not degrade the electrical independence of the Class 1E safety circuits. 
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Non-Class1E DC And UPS System Single Line Diagram. 
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Non-Class1E DC And UPS System Single Line Diagram    
 

 

1.2.3 Separation and Ventilation 

 

For the Class 1E dc system, the 24-hour and the 72-hour battery banks are housed in the 

auxiliary building in ventilated rooms apart from chargers and distribution equipment. The 

battery rooms are ventilated to limit hydrogen accumulation. Each of the four divisions of dc 

systems are electrically isolated and physically separated to prevent an event from causing the 

loss of more than one division. 
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   1.2.4 Maintenance and Testing 
 

Components of the 125 Vdc and 250 Vdc systems undergo periodic maintenance tests to 

determine the condition of the system. Batteries are checked for electrolyte level, specific gravity 

and cell voltage, and are visually inspected. The surveillance testing of the Class 1E 250 Vdc 

system is performed as required by the Technical Specifications. The inverter DC input 

protection will be set at least 10% higher than the battery charger trip set points to prevent the 

inverter tripping before the battery charger. The time delay for the inverter high dc input voltage 

trip will be set higher than the time delay for the battery charger to prevent the inverter tripping 

before the battery charger. 

 

Testing of battery, inverter, transformer and battery charger. 
 

1.2.4.1 Class 1E 24-Hour Battery Capacity Testing 
Each Class 1E 24-hour battery is tested to verify the capability to provide its load for 24 hours 

while maintaining the battery terminal voltage above the minimum voltage. Analysis will be 

performed based on the design duty cycle, and testing will be performed with loads which 

envelope the analyzed battery bank design duty cycle. Each battery is 

Connected to a charger maintained at 270±2 V for a period of at least 24 hours prior to the test to 

assure the battery is fully charged. 

 

 

1.2.4.2 Class 1E 72-Hour Battery Capacity Testing 
Each Class 1E 72-hour battery is tested to verify the capability to provide its load for 72 hours 

while maintaining the battery terminal voltage above the minimum voltage. Analysis will be 

performed based on the design duty cycle, and testing will be performed with loads which 

envelope the analyzed battery bank design duty cycle. Each battery is 

connected to a charger maintained at 270±2 V for a period of at least 24 hours prior to the test to 

assure the battery is fully charged. 

 



Analysis of Electric Power Distribution System of a large Nuclear Power Plant 
 

AIKTC Page 32 
 

 

1.2.4.3 Class 1E 24-Hour Inverter Capacity Testing 
Eac Class 1E 24-hour inverter is tested to verify the capability to provide 12 kW while 

maintaining the output voltage and frequency within the tolerances. The 12 kW capacity is 

sufficient to meet the 24-hour inverter loads. The inverter input voltage will be no more than 210 

Vdc during the test to represent the conditions at the battery end of life. 

 

 

1.2.4.4 Class 1E 72-Hour Inverter Capacity Testing 
Each Class 1E 72-hour inverter is tested to verify the capability to provide 7 kW while 

maintaining the output voltage and frequency within the tolerances The 7 kW capacity is 

sufficient to meet the 72-hour inverter loads.  The inverter input voltage will be no more than 

210 Vdc during the test to represent the conditions at the battery end of life 

 

 

1.2.4.5 Class 1E 24-Hour Charger Capacity Testing 
Each Class 1E 24-hour charger is tested to verify the capability to provide 150 A while 

maintaining the output voltage within the range. The 150 A is sufficient to meet the 24-hour 

loads while maintaining the corresponding battery charged. 

 

 

1.2.4.6 Class 1E 72-Hour Charger Capacity Testing 
Each Class 1E 72-hour charger is tested to verify the capability to provide 125 A while 

maintaining the output voltage within the range. The 125 A is sufficient to meet the 72-hour 

loads, while maintaining the corresponding battery charged. 
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1.2.4.7 Class 1E Regulating Transformer Capacity Testing 
Each Class 1E regulating transformer is tested to verify the capability to provide 30 kW while 

maintaining the output voltage within the tolerance. The 30 kW capacity is sufficient to meet the 

inverter loads  

 

 

1.2.4.8 Motor-Operated Valves Terminal Voltage Testing 
The operating voltage supplied to Class 1E motor-operated valves is measured to verify the 

motor starter input terminal voltage is above the minimum design value of 200 Vdc. The battery 

terminal voltage will be no more than 210 Vdc during the test to represent the conditions at the 

battery end of life. 

 

 

1.2.4.9 Non-Class 1E Battery Capacity Testing 
Each load group 1, 2, 3, and 4 non-Class 1E battery is tested to verify the capability to provide 

500 A for two hours while maintaining the battery terminal voltage above the minimum voltage. 

The 500 A is sufficient to meet the loads. Each battery is connected to a charger maintained at 

135±1 V for a period of at least 24 hours prior to the test to assure the battery is fully charged. 

 

 

1.2.4.10 Non-Class 1E Inverter Capacity Testing 
Each load group 1, 2, 3, and 4 non-Class 1E inverter is tested to verify the capability to 

provide35 kW while maintaining the output voltage and frequency within the tolerances The 35 

kW capacity is sufficient to meet the loads 

 

 

1.2.4.11 Non-Class 1E Charger Capacity Testing 
Each load group 1, 2, 3, and 4 non-Class 1E charger is tested to verify the capability to provide 

550 A while maintaining the output voltage within the range. The 550 A is sufficient to meet the 

loads while maintaining the corresponding battery charged 
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1.3 Offsite Power System  
 

1.3.1 System Description  

 
A transmission system to supply offsite ac energy for startup and normal shutdown through a 

site-specific transmission switchyard. This offsite ac power system is not required for plant 

safety. The normal ac power supply to the main ac power system is provided from the main 

generator.  

 

When the main generator is not available, plant auxiliary power is provided from the switchyard 

by back feeding through the main step up and unit auxiliary transformers. This is the preferred 

power supply. When neither the normal or the preferred power supply is available due to an 

electrical fault at either the main step up transformer, unit auxiliary transformer, isophase bus, or 

6.9kv non segregated bus duct, fast bus transfer will be automatically initiated to transfer the 

loads to the reserve auxiliary transformers powered by maintenance sources of power.  

 

In addition, two non-Class 1E onsite standby diesel generators supply power to selected plant 

loads in the event of loss of the normal, preferred, and maintenance power sources. The reserve 

auxiliary transformers also serve as a source of maintenance power. The maintenance sources are 

site-specific.  

 

Maintenance power is provided at the medium voltage level (6.9 kV) through normally open 

circuit breakers. Bus transfer to the maintenance source is automatic under fast bus transfer logic 

or may be initiated manually. Connection of the preferred and maintenance power supplies to the 

utility grid or other power sources is site-specific. The main generator is connected to the offsite 

power system via three single-phase main step up transformers. 
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 The normal power source for the plant auxiliary ac loads is provided from the isophase 

generator bus through the two unit auxiliary transformers of identical ratings. In the event of a 

loss of the main generator, the power is maintained without interruption from the preferred 

power supply by an auto-trip of the main generator breaker.  

 

Power then flows from the transformer area to the auxiliary loads through the main and unit 

auxiliary transformers.  The transmission system is site-specific.  The transmission line structures 

associated with the plant are designed to withstand standard loading conditions for the specific-

site as provided.  Automatic load dispatch is not used at the plant and does not interface with 

safety-related action required of the reactor protection system. 

 

1.3.2 Transformer Area  
 

The transformer area contains the main step up transformers, the unit auxiliary transformers, and 

the reserve auxiliary transformers. Protective relaying and metering required for this equipment 

is located in the turbine building. The necessary power sources (480 Vac, 120 Vac, and 125 Vdc) 

to the equipment are supplied from the turbine building. One feeder connects the transformer 

area with the switchyard to supply power to/from the main step up transformers for the unit.  

 

1.3.3 Grid Stability 
 

The AP1000 is designed with passive safety-related systems for core cooling and containment 

integrity and, therefore, does not depend on the electric power grid for safe operation. This 

feature of the AP1000 significantly reduces the importance of the grid connection and the 

requirement for grid stability. The AP1000 safety analyses assume that the reactor coolant pumps 

can receive power from either the main generator or the grid for a minimum of 3 seconds 

following a turbine trip.  

 

The AP1000 main generator is connected to the generator bus through the generator circuit 

breaker. The grid is connected to the generator bus through the main step-up transformers and 
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the grid breakers. The reactor coolant pumps are connected to the generator bus through the 

reactor coolant pump breakers, the 6.9 kV switchgear, and the unit auxiliary transformers.  

 

During normal plant operation the main generator supplies power to the generator bus. Some of 

this power is used by the plant auxiliary systems (including the reactor coolant pumps); the rest 

of the power is supplied to the grid.  If, during power operation of the plant, a turbine trip occurs, 

the motive power (steam) to the turbine will be removed.  

 

The generator will attempt to keep the shaft rotating at synchronous speed (governed by the grid 

frequency) by acting like a synchronous motor. The reverse-power relay monitoring generator 

power will sense this condition and, after a time delay of at least 15 seconds, open the generator 

breaker. During this delay time the generator will be able to provide voltage support to the grid if 

needed. The reactor coolant pumps will receive power from the grid for at least 3 seconds 

following the turbine trip. 

 

 A grid stability analysis to show that, with no electrical system failures, the grid will remain 

stable and the reactor coolant pump bus voltage will remain above the voltage required to 

maintain the flow analyses for a minimum of 3 seconds following a turbine trip. 

 

 If the initiating event is an electrical system failure (such as failure of the isophase bus), the 

analyses do not assume operation of the reactor coolant pumps following the turbine trip. The 

responsibility for setting the protective devices controlling the switchyard breakers with 

consideration given to preserving the plant grid connection following a turbine trip. 
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1.4 Redundancy of system 
 

1.4.1 Physical Identification of Safety-Related Equipment 

 
Each safety-related circuit and raceway is given a unique identification number to distinguish 

between circuits and raceways of different voltage level or separation groups. Each raceway is 

color coded with indelible ink, paint, or adhesive markers (adhesive markers are not used in the 

containment) at intervals of 15 feet or less along the length of the raceway and on both sides of 

floor or wall penetrations. Each cable is color coded at a maximum of 5 feet intervals along the 

length of the cable and cable markers showing the cable identification number are applied at 

each end of the cable. The following color coding is used for identification purposes: 

 

Division Color Code 

A  Brown 

B  Green 

C  Blue 

D  Yellow 

 

 

1.4.2 Independence of Redundant Systems 
 

The routing of cable and the design of raceways prevents a single credible event from disabling a 

redundant safety-related plant function. 
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1.4.3 Raceway and Cable Routing 
 

There are five separation groups for the cable and raceway system: group A, B, C, D, and N. 

Separation group A contains safety-related circuits from division A. Similarly, separation group 

B contains safety-related circuits from division B; group C from division C; group D from 

division D; and group N from nonsafety-related circuits. Cables of one separation group are run 

in separate raceway and physically separated from cables of other separation groups. Group N 

raceways are separated from safety-related groups A, B, C and D. Raceways from group N are 

routed in the same areas as the safety-related groups. 

 

 Within the main control room and remote shutdown room (no hazard areas), the 

minimum vertical separation for open top cable tray is 3 inches and the minimum 

horizontal separation is 1 inch. 

 

  Within general plant areas (limited hazard areas), the minimum vertical separation is 12 

inches, and the minimum horizontal separation is 6 inches for open top cable trays with 

low-voltage power circuits for cable sizes <2/0 AWG. For configurations that involve 

exclusively limited energy content cables (instrumentation and control), these minimum 

distances are reduced to 3 inches and 1 inch respectively. 

 

  Within panels and control switchboards, the minimum horizontal separation between 

components or cables of different separation groups (both field-routed and vendor-

supplied internal wiring) is 1 inch, and the minimum vertical separation distance is 6 

inches. 

 

 For configurations involving an enclosed raceway and an open raceway, the minimum 

vertical separation is 1 inch if the enclosed raceway is below the open raceway. 
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Separate trays are provided for each voltage service level: 6.9 kV, low voltage power (480 Vac, 

208Y/120 Vac, 125 Vdc, 250 Vdc), high-level signal and control (120 Vac, 125 Vdc, 250 Vdc), 

and low level signal (instrumentation).  

 

A tray designed for a single class of cables shall contain only cables of the same class except that 

low voltage power cables may be routed in raceways with high level signal and control cables if 

their respective sizes do not differ greatly and if they have compatible operating temperatures. 

 

 When this is done in trays, the power cable ampacity is calculated as if all cables in the tray are 

power cable. Low voltage power cable and high level signal and control cable will not be routed 

in common raceways if the fault current, within the breaker or fuse clearing time, is sufficient to 

heat the insulation to the ignition point. 

 

In general, a minimum of 12 inches vertical spacing is maintained between trays of different 

service levels within the stack. 

 

 

 

1.5 Hazard Protection 
 

Where hazards to safety-related raceways are identified, a predetermined minimum separation is 

maintained between the break and/or missile source and any safety-related raceway, or a barrier 

designed to withstand the effects of the hazard is placed to prevent damage to raceway of 

redundant systems.  Redundant circuits, devices, or equipment (different separation groups) are 

exposed to the same external hazard(s), predetermined spatial separation is provided. Where the 

spatial Separation cannot be met, qualified barriers are installed. 
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CHAPTER 2 
 

2 Motor protection 
 

The electric motor is most essential drive in modern era of industrialization. From fractional hp 

AC motor used for different home appliances to giant motor and induction motor of up to 10,000 

hp used for different industrial applications, should be protected against different electrical and 

mechanical faults for serving their purposes smoothly. The motor characteristics must be very 

carefully considered in selecting the right motor protection scheme. 

 

The abnormalities in motor or motor faults may appear due to mainly two reasons- 

1. Conditions imposed by the external power supply network, 

2. Internal faults, either in the motor or in the driven plan 

 

Unbalanced supply voltages, under-voltage, reversed phase sequence and loss of synchronism (in 

the case of synchronous motor) come under former category. The latter category includes 

bearing failures, stator winding faults, motor earth faults and overload etc. 
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2.1 Need for Motor Circuit Protection 
 

2.1.2Current and Temperature  
Current flow in a conductor always generates heat. The greater the current flow in any one size 

conductor, the hotter the conductor. Excess heat is damaging to electrical components and 

conductor insulation. For that reason, conductors have a rated, continuous current-carrying 

capacity or ampacity. Overcurrent protection devices, such as fuses, are used to protect 

conductors from excessive current flow. 
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Excessive current is referred to as overcurrent. The overcurrent is any current in excess of the 

rated current of equipment or the ampacity of a conductor. It may result from overload, short 

circuit, or ground fault. 

 

2.1.3 Overloads  
 

An overload occurs when too many devices are operated on a single circuit or when electrical 

equipment is made to work harder than its rated design. For example, a motor rated for 10 

amperes may draw 20, 30, or more amperes in an overload condition. In the following 

illustration, a package has become jammed on a conveyor, causing the motor to work harder and 

draw more current. Because the motor is drawing more current, it heats up. Damage will occur to 

the motor in a short time if the problem is not corrected or if the circuit is not shut down by an 

overcurrent protection device. 

 

 

2.1.4 Conductor Insulation 
 

 Motors, of course, are not the only devices that require circuit protection for an overload 

condition. Every circuit requires some form of protection against overcurrent. Heat is one of the 

major causes of insulation failure of any electrical component. High levels of heat to insulated 

wire can cause the insulation to breakdown, melt, or flake off, exposing conductors.  
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2.1.5 Short Circuits 
 When two bare conductors touch, a short circuit occurs. When a short circuit occurs, resistance 

drops to almost zero. Short circuit current can be thousands of times higher than normal 

operating current. 
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Ohm’s Law demonstrates the relationship of current, voltage, and resistance. For example, a 240 

volt motor with 24 Ω (ohms) of resistance would normally draw 10 amperes of current. 

 
 

 

When a short circuit develops, resistance drops. If resistance drops to 24 milliohms, current will 

be 10,000 amperes. 
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2.1.5.1 Short-Circuit Current on unprotected electrical circuit 
 

When a short circuit occurs, current will continue to flow in an unprotected electrical circuit. The 

peak short-circuit 

Circuits current of the first cycle is the greatest and is referred to as peak let-thru current (IP). 

The force of this current can cause damage to wires, switches, and other electrical components of 

a circuit. 

 
Associated with the peak let-thru current is peak let-thru energy (I2t). For an unprotected 

circuit, this energy is often capable of dramatic destruction of equipment and is a serious safety 

concern. 
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2.1.5.2 Short-Circuit Current on Protected Electrical Circuits 

 
Fortunately, if a circuit has a properly applied overcurrent  

Protection device, the device will open the circuit quickly when if a short circuit occurs, limiting 

peak let-thru current (IP) and energy (I^2 ×t). 

 
 

The degree of motor protection system depends on the costs and applications of the electrical.  

2.2 Small Motor Protection Scheme 

 
Generally motors up to 30 hp are considered in small category. The small motor protection in 

this case is arranged by HRC fuse, bimetallic relay and under voltage relay – all assembled into 

the motor contractor – starter itself. 

 

Most common cause of motor burn outs on LV fuse protected system is due to single phasing. 

This single phasing may remain undetected even if the motors are protected by conventional 

bimetallic relay. It cannot be detected by a set of voltage relays connected across the lines. Since, 

even when one phase is dead, the motor maintains substantial back emf on its faulty phase 

terminal and hence voltage across the voltage relay is prevented from dropping – off. 
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The difficulties of detecting single phasing can be overcome by employing a set of three 

current operated relays as shown in the small motor protection circuit given below. 

 

The current operated relays are very simple instantaneous relays. There are mainly two parts in 

this relay one is a current coil and other is one or more normally open contacts (NO Contacts). 

The NO contacts are operated by the mmf of the current coil. This relay is connected in series 

with each phase of the supply and backup by HRC fuse.  

 

When the electrical motor starts and runs the supply current passes through the current coil of the 

protective. The mmf of the current coil makes the NO contacts closed. If suddenly a single 

phasing occurs the corresponding current through the current coil will falls and the contacts of 

the corresponding relay will become to its normal open position. The NO contacts of the all three 

relays are connected in series to hold – in the motor contractor. So if any one relay contact opens, 

results to release of motor contractor and hence motor will stop running. 
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2.3 Large Motor Protection 
Large motor especially induction motors require protection against- 

1. Motor bearing failure, 

2. Motor overheating, 

3. Motor winding failure, 

4. Reverse motor rotation. 

1. Motor Bearing Failure 
Ball and roller bearings are used for the motor up to 500 hp and beyond this size sleeve bearings 

are used. Failure of ball or roller bearing usually causes the motor to a standstill very quickly. 

Due to sudden mechanical jamming in motor bearing, the input current of the motor becomes 

very high. 

 

 Current operated protection, attached to the input of the motor cannot serve satisfactorily. Since 

this motor protection system has to be set to override the high motor starting current. The 

difficulty can be overcome by providing thermal over load relay. 

 

 As the starting current of the motor is high but exists only during starting so for that current the 

there will be no overheating effect. But over current due mechanical jamming exists for longer 

time hence there will be a overheating effect. So stalling motor protection can be offered by the 

thermal overload relay.  

 

Stalling protection can also be provided by separate definite time over current relay which is 

operated only after a certain predefined time if over current persists beyond that period. In the 

case of sleeve bearing, a temperature sensing device embedded in the bearing itself.  

This scheme of motor protection is more reliable and sensitive to motor bearing failure since 

the thermal withstand limit of the motor is quite higher than that of bearing. If we allow the 

bearing overheating and wait for motor thermal relay to trip, the bearing may be permanently 

damaged. The temperature sensing device embedded in the bearing stops the motor if the bearing 

temperature rises beyond its predefined limit. 
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2. Motor over Heating 
The main reason of motor over heating that means over heating of motor winding is due to 

either of mechanical over loading, reduced supply voltage, unbalanced supply voltage and single 

phasing. The overheating may cause deterioration of insulation life of motor hence it must be 

avoided by providing proper motor protection scheme. To avoid overheating, the motor should 

be isolated in 40 to 50 minutes even in the event of small overloads of the order of 10 %. 

The protective relay should take into account the detrimental heating effects on the motor rotor 

due to negative sequence currents in the stator arising out of unbalance in supply voltage. The 

motor should also be protected by instantaneous motor protection relay against single phasing 

such as a stall on loss of one phase when running at full load or attempting to start with only two 

of three phases alive. 

3. Motor Winding Failure 
The motor protection relay should have instantaneous trip elements to detect motor winding 

failure such as phase to phase and phase to earth faults. Preferably phase to phase fault unit 

should be energized from positive phase sequence component of the motor current and another 

instantaneous unit connected in the residual circuit of the current be used for earth faults 

protection. 

 

4. Reverse Motor Rotation 

Especially in the case of conveyor belt, the reverse motor rotation must be avoided. The 

reverse rotation during starting can be caused due to inadvertent reversing of supply phases. A 

comprehensive motor protection relay with an instantaneous negative sequence unit will satisfy 

this requirement. If such relay has not been provided, a watt-meter type relay can be employed. 
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2.4 Overcurrent Protection Devices 
 

An overcurrent protection device must be able to recognize the difference between an 

overcurrent and short circuit and respond in the proper way. Slight overcurrents can be allowed 

to continue for some period of time; but as the current magnitude increases, the protection device 

must open faster. Short circuits must be interrupted instantly.  

Fusible Disconnect Switch A fusible disconnect switch is one type of device used to provide 

overcurrent protection. Properly sized fuses located in the switch open the circuit when an 

overcurrent condition exists.  
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A fuse is a one-shot device. The heat produced by overcurrent causes the current carrying 

element to melt open, disconnecting the load from the source voltage 

 

 
 

 

2.4.1 Non-time-delay  
Non-time-delay fuses provide excellent short-circuit protection. When an overcurrent occurs, 

heat builds up rapidly in the fuse. Non-time-delay fuses usually hold 500% of their rating for 

approximately one-fourth second, after which the current-carrying element melts. This means 

that these fuses should not be used in motor circuits which often have inrush currents greater 

than 500%. 

 

 

 

2.4.2 Time-delay fuses  
Time-delay fuses provide overload and short-circuit protection. Time-delay fuses usually allow 

several times the rated current to flow for a short time to allow a motor to start.  
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2.4.3 Fuse Classes  

 
Fuses are grouped into classes based on their operating and construction characteristics. Each 

class has an interrupting rating (IR) in amperes which is the amount of fault current this class of 

fuses is capable of interrupting without destroying the fuse casing.  

 

Fuses are also rated according to the maximum continuous current and maximum voltage they 

can handle. Underwriters Laboratories (UL) establishes and standardizes basic performance and 

physical specifications to develop its safety-test procedures.  

 

These standards have resulted in distinct classes of low-voltage fuses rated at 600 volts or less. 

The following chart lists the fuse class and its ratings. 
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2.5 Circuit Breakers 

 
 Another device used for overcurrent protection is a circuit breaker. The circuit breaker is a 

device designed to open and close the circuit by no automatic means and to open the circuit 

automatically on predetermined overcurrent without damage to itself when properly applied 

within its rating.   

 

Circuit breakers provide a manual means of energizing and de-energizing a circuit. In addition, 

circuit breakers provide automatic overcurrent protection of a circuit. One key advantage of a 

circuit breaker is that it allows a circuit to be reactivated quickly after a short circuit or overload 

is cleared by simply resetting the breaker. 

 

 
 

Ampere Rating Like fuses; every circuit breaker has ampere, voltage, and interrupting ratings. 

The ampere rating is the maximum continuous current a circuit breaker can carry without 

exceeding its rating. In general, the circuit breaker ampere rating should not exceed the 

conductor ampere rating.  
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For example, if the conductor is rated for 20 amps, the circuit breaker rating should not exceed 

20 amps. Siemens breakers are rated on the basis of using 60° C or 75° C conductors. This 

means that even if a conductor with a higher temperature rating were used, the ampacity of the 

conductor must be figured on its 60° C or 75° C rating. 

 

Voltage rating the voltage rating of the circuit breaker must be at least equal to the supply 

voltage. The voltage rating of a circuit breaker can be higher than the supply voltage, but never 

lower. For example, a 480 VAC circuit breaker could be used on a 240 VAC circuit. A 240 VAC 

circuit breaker could not be used on a 480 VAC circuit. The voltage rating is a function of the 

circuit breakers ability to suppress the internal arc that occurs when the circuit breakers contacts 

open. 

 

Fault-Current Circuit breakers are also rated according to the level of fault 

Interrupting Rating current they can interrupt. When applying a circuit breaker, one must be 

selected to sustain the largest potential short-circuit current which can occur in the selected 

application. Siemens circuit breakers have interrupting ratings from 10,000 to 200,000 amps. 
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Motor Control Center (Diagram)  
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CHAPTER3 
 

3. Transformer Area 
There are different kinds of transformers such as two winding or three winding electrical power 

transformers, auto transformer, regulating transformers, ear thing, rectifier transformers etc. 

Different transformers demand different schemes of transformer protection depending upon their 

importance, winding connections, earthing and mode of operation etc. 

It is common practice to provide Buchholz relay protection to all 0.5 MVA and above 

transformers. While for all small size distribution transformers, only high voltage fuses are used 

as main protective device. For all larger rated and important distribution transformers, 

over current protection along with restricted earth fault protection is applied. Differential 

protection should be provided in the transformers rated above 5 MVA. 

Depending upon the normal service condition, nature of transformer faults, degree of sustained 

over load, scheme of tap changing, and many other factors, the suitable transformer 

protection schemes are chosen.  

3.1 Nature of Transformer Faults 

Although an electrical power transformer is a static device, but internal stresses arising from 

abnormal system conditions, must be taken into consideration. 

A transformer generally suffers from following types of transformer fault- 

1. Over current due to overloads and external short circuits, 

2. Terminal faults, 

3. Winding faults, 

4. Incipient faults. 
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The entire above mentioned transformer faults cause mechanical and thermal stresses inside the 

transformer winding and its connecting terminals. Thermal stresses lead to overheating which 

ultimately affect the insulation system of transformer. Deterioration of insulation leads to 

winding faults. Some time failure of transformer cooling system, leads to overheating of 

transformer. So the transformer protection schemes are very much required.The short 

circuit current of an electrical transformer is normally limited by its reactance and for low 

reactance, the value of short circuit current may be excessively high. The duration of external 

short circuits which a transformer can sustain without damage as given in BSS 171:1936. 

 

TRANSFORMER % REACTANCE PERMITTED FAULT DURATION IN SECONDS 

4 % 2 

5 % 3 

6 % 4 

7 % and over 5 

 

The general winding faults in transformer are either earth faults or inter-turns faults. Phase to 

phase winding faults in a transformer is rare. The phase faults in an electrical transformer may be 

occurred due to bushing flash over and faults in tap changer equipment. Whatever may be the 

faults, the transformer must be isolated instantly during fault otherwise major breakdown may 

occur in the electrical power system. Incipient faults are internal faults which constitute no 

immediate hazard. But it these faults are over looked and not taken care of, these may lead to 

major faults. The faults in this group are mainly inter-lamination short circuit due to insulation 

failure between core lamination, lowering the oil level due to oil leakage, blockage of oil flow 

paths. All these faults lead to overheating. So transformer protection scheme is required for 



Analysis of Electric Power Distribution System of a large Nuclear Power Plant 
 

AIKTC Page 58 
 

incipient transformer faults also. The earth fault, very nearer to neutral point of transformer star 

winding may also be considered as an incipient fault. 

Influence of winding connections and earthing on earth fault current magnitude. 

There are mainly two conditions for earth fault current to flow during winding to earth faults, 

1. A current exists for the current to flow into and out of the winding. 

2. Ampere-turns balance is maintained between the windings. 

The value of winding earth fault current depends upon position of the fault on the winding, 

method of winding connection and method of earthing. The star point of the windings may be 

earthed either solidly or via a resistor. On delta side of the transformer the system is earthed 

through an earthing transformer. transformer provides low impedance path to the zero 

sequence current and high impedance to the positive and negative sequence currents. 

3.2 Star Winding with Neutral Resistance Earthed 

In this case the neutral point of the transformer is earthed via a resistor and the value of 

impedance of it, is much higher than that of winding impedance of the transformer. That means 

the value of transformer winding impedance is negligible compared to impedance of 

earthing resistor. The value of earth current is, therefore, proportional to the position of the fault 

in the winding. As the fault current in the primary winding of the transformer is proportional to 

the ratio of the short circuited secondary turns to the total turns on the primary winding, the 

primary fault current will be proportional to the square of the percentage of winding short 

circuited.  

3.3 Star Winding with Neutral Solidly Earthed 

In this case the earth fault current magnitude is limited solidly by the winding impedance and the 

fault is no longer proportional to the position of the fault. The reason for this non linearity is 

unbalanced flux linkage. 
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3.4 Three winding Transformers 
 

3.4.1 Introduction 

       In addition to primary and secondary windings, the transformers may be constructed with 

the third winding. This winding is called tertiary winding. The normal two winding transformer 

can be converted into three winding transformer with an additional secondary winding having 

number of turns as per the requirements. 

 

3.4.2 Why to use tertiary winding? 

 

       There are many reasons for which three winding transformers are employed. Some of the 

reasons are listed below. 

 

1. If a two winding transformer has to supply an additional load which has to be insulated from 

the secondary windings for some reasons then three winding transformer may used with 

additional load carried by tertiary winding. 

 

2. The phase compensating devices can be supplied with three winding transformer which are 

not operating at either primary or secondary voltage but at some different voltage. 

 

3. The tertiary winding can be used as a voltage coil in a testing transformer. 

 

4. Three supply systems operating at different voltages can be interconnected using three 

winding transformer. 

 

5. The three winding transformer can be used to load large split winding generators. 

 

6. The substation requirements can be met using three winding transformer which requires a 

voltage different from that of primary and secondary windings. 
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7. The tertiary winding connected in delta reduces the impedance offered to the zero sequence 

currents so a larger earth fault current flows for proper operation of protective equipment. For 

unbalanced load it limits the imbalance in voltage. It permits the flow of third harmonic current 

to reduce third harmonic voltage. 

 

       The third winding known as tertiary winding is generally connected in delta. Thus when any 

fault or short circuit occurs on the primary or secondary sides, there will be large unbalance of 

phase voltage which is compressed by large tertiary winding circulating current. The reactance of 

the tertiary winding must be such as to limit the circulating current to that which can be carried 

by copper in order to avoid overheating of tertiary winding under fault conditions. 

 

 

3.4.3 Stabilizing Due to Tertiary Winding 

       For unbalanced single phase load, the star-star connection offers high reactance to flow of 

current. Any unbalanced load current has three components viz positive, negative and zero 

sequence components. The zero sequence component on the secondary side can not be balanced 

by primary currents as zero sequence currents can not flow in the isolated neutral of star 

connected primary. On the secondary side the zero sequence current sets up magnetic flux in the 

core. The iron path is available for this flux and the impedance offered to the zero sequence 

currents is very high. But the delta connected tertiary winding permits circulation of zero 

sequence currents in it. So impedance offered to the flow of zero sequence currents is lowered. 

For this purpose the tertiary winding is called stabilizing winding. This is shown in the Fig. 1. 

Fig. 1 
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3.4.5 Advantages and Disadvantages of Three Winding Transformer 

 

       The advantages of a three winding transformer are as given below 

 

i) It can supply additional load providing insulation from secondary windings. 

 

ii) It can act as a source of voltage at substation to meet the internal load demand of substation 

which is at different voltage that either of primary or secondary voltage level. 

 

iii) The reactive power injection into the system is possible for voltage control by connecting 

synchronous condensers or static capacitors to the tertiary winding. 

 

iv) A delta connected tertiary winding offers less impedance to the flow of zero sequence 

currents. The allows larger earth fault current to flow through protective device facilitating its 

proper operation. 

 

v) It reduces voltage unbalance under unbalanced loading conditions and permits third harmonic 

current to flow which reduces third harmonic voltages. 

 

vi) Three transmission lines at different voltage levels can be interconnected by using three 

winding transformer. 

 

vii) The third winding of a three winding transformer, usually called tertiary winding can be used 

to serve purpose of measuring voltage of HV testing transformer. 

   

     The disadvantage of a three winding transformer is its construction is little complicated as 

compared to normal two winding transformer. A separate third winding is required to be placed 

which requires more copper and hence cost of three winding transformer is obviously more. The 

core of the transformer has to carry three windings instead of two as in case of normal two 

winding transformer. 
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CHAPTER4 
 

4 Protection of Lines or Feeder 
 

As the length of electrical power transmission line is generally long enough and it runs through 

open atmosphere, the probability of occurring fault in electrical power transmission line is much 

higher than that of electrical power transformers and alternators. That is why a transmission line 

requires much more protective schemes than a transformer and an alternator. 

 

 

Protection of line should have some special features, such as- 

1. During fault, the only circuit breaker closest to the fault point should be tripped. 

2. If the circuit breaker closest the faulty point, fails to trip the circuit breaker just next to this 

breaker will trip as back up. 

3. The operating time of relay associated with protection of line should be as minimum as possible 

in order to prevent unnecessary tripping of circuit breakers associated with other healthy parts of 

power system. 

These above mentioned requirements cause protection of transmission line much different 

from protection of transformer and other equipment of power systems. The main three methods 

of transmission line protection are – 

1. Time graded over current protection. 

2. Differential protection. 
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4.1 Time Graded Over Current Protection 
This may also be referred simply as over-current protection of electrical power transmission line. 

Let’ discuss different schemes of time graded over current protection. 

4.1.1 Over Current Line Protection by Inverse Relay 

 
The drawback as we discussed just in definite time over current protection of transmission line, 

can easily be overcome by using inverse time relays. In inverse relay the time of operation is 

inversely proportional to fault current. 

 

 
In the above figure, overall time setting of relay at point D is minimum and successively this 

time setting is increased for the relays associated with the points towards the point A. 

 

In case of any fault at point F will obviously trip CB-3 at point D. In failure of opening CB-3, 

CB-2 will be operated as overall time setting is higher in relay at point C. 
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Although, the time setting of relay nearest to the source is maximum but still it will trip in 

shorter period, if major fault occurs near the source, as the time of operation of relay is inversely 

proportional to faulty current. 

 

4.1.2 Over Current Protection of Parallel Feeders 

 
For maintaining stability of the system it is required to feed a load from source by two or more 

than two feeders in parallel. If fault occurs in any of the feeders, only that faulty feeder should be 

isolated from the system in order to maintain continuity of supply from source to load. 

 

 This requirement makes the protection of parallel feeders little bit more complex than simple 

non direction over current protection of line as in the case of radial feeders. The protection of 

parallel feeder requires to use directional relays and to grade the time setting of relay for 

selective tripping. 
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There are two feeders connected in parallel from source to load. Both of the feeders have non-

directional over current relay at source end. These relays should be inverse time relay. Also both 

of the feeders have directional relay or reverse power relay at their load end. The reverse power 

relays used here should be instantaneous type. That means these relays should be operated as 

soon as flow of power in the feeder is reversed. The normal direction of power from source to 

load. 

 

Now, suppose a fault occurs at point F, say the fault current is If. This fault will get two parallel 

paths from source, one through circuit breaker A only and other via CB-B, feeder-2, CB-Q, load 

bus and CB-P. This is clearly shown in figure below, where IA and IB are current of fault shared 

by feeder-1 and feeder-2 respectively. 

 

 
 

As per Kirchhoff’s current law, IA + IB = If. 

 

Now, IA is flowing through CB-A, IB is flowing through CB-P. As the direction of flow of CB-P 

is reversed it will trip instantly.  
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But CB-Q will not trip as flow of current (power) in this circuit breaker is not reversed. As soon 

as CB-P is tripped, the fault current IB stops flowing through feeder and hence there is no 

question of further operating of inverse time over current relay.  

 

IA still continues to flow even CB-P is tripped. Then because of over current, CB-A will trip. In 

this way the faulty feeder is isolated from system. 

 

4.2 Busbar Protection 

 
In early days only conventional over current relays were used for busbar protection. But it is 

desired that fault in any feeder or transformer connected to the busbar should not disturb busbar 

system. In viewing of this time setting of busbar protection relays are made lengthy. So when 

faults occur on busbar itself, it takes much time to isolate the bus from source which may come 

much damage in the bus system. 

 

 

In recent days, the second zone distance protection relays on incoming feeder, with operating 

time of 0.3 to 0.5 seconds have been applied for busbar protection. 

But this scheme has also a main disadvantage. This scheme of protection can not discriminate the 

faulty section of the busbar. 

 

Now days, electrical power system deals with huge amount of power. Hence any interruption in 

total bus system causes big loss to the company. So it becomes essential to isolate only faulty 

section of busbar during bus fault. 

 

Another drawback of second zone distance protection scheme is that, sometime the clearing time 

is not short enough to ensure the system stability. 

 

To overcome the above mentioned difficulties, differential busbar protection scheme with an 

operating time less than 0.1 sec., is commonly applied to many SHT bus systems. 
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4.2.1 Voltage Differential Protection of Busbar 
The current differential scheme is sensitive only when the CTs do not get saturated and maintain 

same current ratio, phase angle error under maximum faulty condition. This is usually not 80, 

particularly, in the case of an external fault on one of the feeders. The CT on the faulty feeder 

may be saturated by total current and consequently it will have very large errors. Due to this 

large error, the summation of secondary current of all CTs in a particular zone may not be zero. 

So there may be a high chance of tripping of all circuit breakers associated with this protection 

zone even in the case of an external large fault. To prevent this maloperation 

of current differential busbar protection, the 87 relays are provided with high pick up current and 

enough time delay. 

The greatest troublesome cause of current transformer saturation is the transient dc component of 

the short circuit current. 

These difficulties can be overcome by using air core CTs. This current transformer is also called 

linear coupler. As the core of the CT does not use iron the secondary characteristic of these CTs, 

is straight line. 

In voltage differential busbar protection the CTs of all incoming and outgoing feeders are 

connected in series instead of connecting them in parallel. 
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The secondaries of all CTs and differential relay form a closed loop. If polarity of all CTs are 

properly matched, the sum of voltage across all CT secondaries is zero. Hence there would be no 

resultant voltage appears across the differential relay. When a buss fault occurs, sum of the all 

CT secondary voltage is no longer zero. Hence, there would be current circulate in the loop due 

to the resultant voltage. As this loop current also flows through the differential relay, the relay is 

operated to trip all the circuit beaker associated with protected bus zone. Except when ground 

fault current is severally limited by neutral impedance there is usually no selectivity problem 

when such a problem exists, it is solved by use of additional more sensitive relaying equipment 

including a supervising protective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Analysis of Electric Power Distribution System of a large Nuclear Power Plant 
 

AIKTC Page 69 
 

CHAPTER5 
 

5 Grounding Systems 
 

5.1 What is Grounding? 

Equipment earthing or earthing is a connection done through a metal link between the body of 

any electrical appliance, or neutral point, as the case may be, to the deeper ground soil. The 

metal link is normally of MS flat, CI flat, GI wire which should be penetrated to the ground earth 

grid. 

5.2 Necessity of Equipment Earthing/Grounding 

 

(a)Safety of personnel  

 

(b)Safety of equipment Prevent or at least minimize damage to equipment as a result of flow of 

heavy currents. 

 

(c) Improvement of the reliability of the power system. 

5.3 Classification of Earthing/Grounding 

The earthing is broadly divided as 

 

a) System earthing (Connection between part of plant in an operating system like LV neutral of 

a power transformer winding) and earth. 
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b) Equipment earthing (safety grounding) connecting bodies of equipment (like electric body, 

transformer tank, switchgear box, operating rods of air break switches, LV breaker body, HV 

breaker body, feeder breaker bodies etc) to earth. 

 

5.4 Permissible Values of Earth Resistance 

a) Power stations – 0.5 ohms 

b) EHT stations – 1.0 ohms 

c) 33KV SS – 2 ohms 

d) DTR structures – 5 ohms 

e) Tower foot resistance – 10 ohms 

5.5 What are the Basics for arriving at Permissible Earth Resistances? 

As per IE rules one has to have a definite base for that as per IE rules one has to keep touch 

potential less than 

a) Recommended safe value 523 volts 

b) Ifault = maximum current in fault conditions, 

 
c) Maximum fault current is 100 KVA the current in 100 KVA is about 100 A; where percentage 

impedance is 4% 

 
d) For a substation of 100 KVA transformer 

 
0.26 ohms being quite low, quality work is to be done during construction, to obtain such a value 
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of earthing system, and the expenditure for that will be very high. 

Hence the electrical inspectors are insisting about 1.0 ohm. This seems justifying for the urban 

areas. This value may be 2 ohms in case of rural areas, which is recommended by most of the 

authorities. 

e) The earth electrode resistance value also carries importance in view of full protection by 

lightning arrestors against lightning. 

The earth electrode resistance value in that case is given by the formula 

 

Flash over voltage of 11KV = 75 KV 

Lightning arrestor Displacement = 40 KA. 

 

 

5.6 Type of Earthing/Grounding 

5.6.1 Plate Type Earthing/Grounding 

In this, cast Iron plate of size 600 mm X 600 mm X 6.3 mm thick plate is being used as earth 

plate. This is being connected with Hot dip GI main earth strip of size 50mm X 6mm thick X 2.5 

meter long by means of nut, bolts & washers of required size. The main earth strip is connected 

with hot dip GI strip of size 40mm X 3mm of required length as per the site location up to the 

equipment earth / neutral connection. The earth plate is back filled & covered with earthing 

material (mixture of charcoal & salt) by 150mm from all six sides. The remaining pit is back 

filled with excavated earth. Along with earth plate, rigid PVC pipe of 2.5 meter long is also 

provided in the earth pit for watering purpose for to keep the earthing resistance within specific 

limit. 
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5.6.2 Pipe Type Earthing/Grounding 

In this hot dip GI pipe of size 40mm dia X 2.5 meter is being used for equipment earthing. This 

pipe is perforated at each interval of 100mm and is tapered at lower end. A clamped is welded 

with this pipe at 100mm below the top for making connection with hot dip GI strip of size 40mm 

X 3mm of required length as per the site location up to the equipment earth / neutral connection. 

On its open end funnel is being fitted for watering purpose. The earth pipe is placed inside 2700 

mm depth pit. A 600mm dia “farma“of GI sheet or cement pipe in two halves is placed around 

the pipe. Then the angular space between this “farma” and earth pipe is back filled with alternate 

layer of 300mm height with salt and charcoal. The remaining space outside “farma” will be 

backfilled by excavated earth. The “farma” is gradually lifted up as the backfilling up progresses. 

Thus the pit is being filled up to the 300mm below the ground level. This remaining portion is 

covered by constructing a small chamber of brick so that top open end of pipe and connection 

with main earth pipe will be accessible for attending when necessary. The chamber is closed by 

wooden / stone cover. Water is poured into the pipe through its open end funnel to keep the 

earthing resistance within specific limit. 

Other types of earthing: When the capabilities of certain equipment are limited, they may not 

with stand certain fault currents then the following types of earthing are resorted to limit the fault 

current.  

(a) Resistance earthing  

(b) Reactance earthing 

(c)  Peterson coil earthing. 

(d)  Earthing through grounding transformer. 
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5.7 Grounding Grids 
       The low ground resistance in case of high voltage substations can be obtained with the use 

of interconnected ground grids. In a typical grounding grid system, a number of interconnected 

bare solid copper conductors are buried at a depth of 0.3 to 0.6 m and spaced in a grid pattern. It 

provides common earth for all devices and metallic structures in the substation. 

       At each of the junction point, the conductors are bonded together. This system is usually 

supported by a number of vertical rods about 3 m long at some joints. 

       If a is cross-sectional area of copper, in circular miles, t is the fault duration in seconds, 

Tm is the maximum allowable temperature and Ta is the ambient temperature then the size of grid 

conductors required which prevents fusing under the fault current is given as, 

 
       If the grid depth is less than 0.25 m then the earthing resistance of the grid is given by, 

 
       Here R = Grid resistance in ohms 

                 a = Ground area occupied by grid in m2 

                 L = Total length of buried conductors in m 

       But when the grid depth is greater than 0.25 m then earthing resistance is given by, 

 
       The effective grounding of the equipment is possible through the grid. Also the voltage 

gradient at the surface of the earth can be controlled at safe value for human contacts with the 

addition of ground rods; the ground resistance further reduces when soil resistivity in the upper 

layer is more than the soil underneath. 
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5.8 Grounding Transformer 
 

       If a neutral point is required or not available in case of delta connections and bus bar points, 

a zig-zag transformer is used. Earthed transformer are used for providing the neutral pint for such 

cases. It is a core-type transformer having three limbs built-up in the same manner as that of a 

power transformer. Each limb accommodates two equally-spaced windings and the way they are 

connected is shown in the Fig. 1. It will be seen that the current in the two halves of the winding 

on each limb acts in opposite directions. These currents do not allow undeserving harmonics to 

prevail in the circuit, and thereby, the stresses on the insulation of the transformer are 

considerably reduced. 

 

Fig. 1  Representation of an earthing transformer 

       The impedance of the earthing transformers is quite low, and therefore, the fault current will 

be quite high. The magnitude of the fault current is limited by inserting resistance either in the 

neutral circuit as shown in Fig. 2 or in the windings of the earthing transformer. Components of 

various currents flowing under the conditions are also shown therein. 
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Fig. 2  Insertion of resistance in the neutral circuit 

       

 

 The terminals of the earthing transformers are soldered to the power transformer for obtaining a 

solid connection between them. The capacity of the earthing transformer is denoted by the fault 

current it is capable of handling. Under normal operating conditions, it is only iron losses that are 

continuously present; copper losses are present only when the fault occurs. These copper losses 

are present only for short periods due to the short duration of fault (in the order of a few 

seconds). 
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CHAPTER6 
 

6 Lighting Arrester and Surge Arrester 
 

That is why all electrical equipment and insulators of power system must be protected against 

electrical surges. The method of protecting system from surge is normally referred as surge 

protection. The main equipment commonly used for this purpose is lightning arrester or surge 

arrester.  

 

There are two types of surges one comes externally from atmosphere such as atmospheric 

lightning. Second type is originated from electrical system itself, such as switching surges. 

 

When an electrically charged cloud comes nearby an electrical transmission line, the cloud 

induces electrical charges in the line. When the charged cloud is suddenly discharged, through 

lightning, the induced charged in the transmission line is no longer confined static. It starts 

travelling and originate dynamic transient over voltage.  

 

This transient overvoltage travels towards both load and source side, on the transmission line 

because of distributed line inductance and stray capacitance. This surge voltage travels with 

speed of light. At the end of the transmission line, as the surge impedance changes, the surge 

voltage wave reflected back. This forward and backward travelling of surge voltage wave 

continues until the energy of the surge or impulse is attenuated by line resistance.  

 

This phenomenon causes voltage stress on the transmission system many times greater than 

normal rated voltage of the system. Hence, surge protection scheme must be provided to 

the electrical power transmission system to make reliable and healthy system. Lightning 

arrester is one of the main components to protect the system from surge.  
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As we said earlier, that the electrical surge also can be generated from the system itself. Actually 

during switching operation there may be a chance of current chopping. If during normal 

operation, if electrical isolator is opened on load. Sudden open circuit is occurred in the system. 

In addition to these, the basic arc-quenching techniques of SF6 circuit breaker and vacuum circuit 

breaker may give rise to current chopping and multiple re-ignition sometimes. 

 

As we know that sudden current chopping give rise to the di/dt. [di/dt = rate of change of 

current with respect to time]. As the electrical load is generally inductive, there is a transient 

voltage, expressed by L(di/dt) where L is the inductance of load of system. This voltage is 

induced across the opening contacts, and travels towards load and reflects in similar manner of 

lightning impulse. Lightning arrestor or surge arrester are provided at the end of the transmission 

line to withstand the surge voltage. 

 

Generally oil field electrical power transformer, electrical switchgear, cables, electrical 

transmission lines, distribution lines are quite capable for withstanding these switching impulse 

voltages, as their insulation level is quite high to withstand these over voltages. But, 

generator, electric motor, dry type transformers and electric arc furnaces etc. cannot withstand 

large switching impulse voltages. As essentially this types of equipment do not have very high 

level of insulation. To protect this equipment from surges, lightning arrester is must. 

In electrical sub-station, arresters are mainly used at the entrance of any feeders and also they are 

used at both rides of electrical power transformers as transformer is also considered as inductive 

load and very costly equipment. 

 

 

In modern era, gap less ZnO or zinc oxide surge arresters are mainly used for surge protection. 

Let us discuss zinc oxide type gap less arresters. 
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6.1 Construction of Zinc Oxide Lightning Arrester 

 
This type of arrester comprises of numbers of solid zinc oxide disc. These discs are arranged one 

by one to form a cylindrical stack. The number of zinc oxide discs used per lightning 

arrester depends upon the voltage rating of the system. This stack is kept inside a cylindrical 

housing of polymer or porcelain. Then the stack is placed inside the housing and highly pressed 

by heavy spring load attached to end cap at top. The equipment connection terminal for line is 

projected from top cap and connection terminal for earth is projected from the bottom cap. 
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6.2 Working Principle of Zinc Oxide Lightning Arrester 

 
The normal operation is defined as condition when no surge is presented and the surge arrester is 

subjected to normal system voltage only. 

The zinc oxide has highly non-uniform current voltage (I – V) characteristics. This typical I-V 

characteristic makes zinc oxide very suitable for designing gap less zinc oxide lightning arrester 

for surge protection. The non linear resistance of the block is an inherent bulk property and 

consists of mainly zinc oxide (90 to 95%) with relatively small amounts of several additives of 

other metal oxide (5 to 10%) like alumina, antimony tri-oxide, bismuth oxide, cobalt oxide, 

zirconium etc. On a macroscopic scale the additives are almost homogeneously distributed 

throughout the arrester blocks. But the micro structures of the metal oxide block represent a 

network of series and parallel arrangements of highly doped zinc oxide (ZnO) grains separated 

by inter granular junctions. The non linear behavior is the super imposition of non linear 

characteristics of individual junctions. The current carrying capacity of the surge arrester block is 

proportional to the total cross-section of the block. 

The non linear resistance characteristics of ZnO block can be expressed as, 

 
 

 

Where, Ir and Vr are the reference current and voltage respectively of the lightning arrester 

or surge arrester block. The value of x is 30 to 40 in case of metal oxide block. For normal 

system, the voltage and current increase. For normal system, the voltage and current increases 

linearly, i.e. for increasing system voltage at this range, current is increased in linear 

proportionate. The current at this region of characteristics is in range of micro ampere. But 

beyond a certain voltage level, leakage current voltage level, leakage current starts increasing 

very rapidly it is of KA range. The voltage beyond which the current through the LA becomes 

such high, is referred as reference voltage and the current at reference voltage is known as 

reference current. Sudden draining of huge current through lightning arrester just beyond 

reference voltage level, prevents the system from transient over voltage stress. The voltage-
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current relation in a metal oxide block highly depends upon temperature. Metal oxide block has 

negative temperature co-efficient. That means with increase in temperature, resistance of 

the surge arrester decreases hence for some system voltage, the leakage current through the 

instrument increases with increase in temperature. 

As we know that, there would be a continuous leakage current through the LA. This 

leakage current generates heat. This generated heat should be dissipated properly otherwise the 

temperature of the LA may rise which further increases the leakage current. Because of this the 

proper thermal design of surge arrester housing plays an important role. There is a critical 

temperature depending upon the voltage rating of the metal oxide block beyond which joule heat 

generated in the block which joule heat generated in the block cannot be dissipated at required 

rate and which finally leads to thermal runaway of lightning arrester. 

Now we can understand that, the working principle of LA or surge arrester used for surge 

protection fully depends upon non linear V-I characteristics of metal oxide (ZnO) blocks inside 

the insulator housing of the arrester. 
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CHAPTER 7 

 

7 SAFETY  CONSIDERATIONS: 
 

The philosophy employed in the safety design of a Westinghouse PWR is described as "defense 

in depth." Defense in depth ensures that a plant is designed, fabricated, constructed, and operated 

not only to be safe during normal operation but to account safely for the possibility of a spectrum 

of accidents. The plant has sophisticated safety systems and devices to guard against human 

error, equipment failures, and malfunctions taking into account such natural phenomena as 

Earthquakes, tornadoes, and floods. 

 

 

7.1 FIRST LEVEL OF DEFENSE 

 
The first level of defense addresses prevention of accidents through the design of the plant, 

including quality assurance, redundancy, separation, testing, and inspection. The plant is 

designed and built to operate as intended with a high degree of reliability. An example of how 

this first level of defense is applied is the design of the reactor coolant system (RCS) pressure 

boundary. This same philosophy is utilized in the design of all safety-related systems, 

components, and structures. The components that comprise the RCS pressure boundary are 

required to be designed, fabricated, erected, and maintained to quality standards that reflect the 

importance of the safety function to be performed.  

 

The quality standards provide that the facility will be able to withstand, without loss of capability 

to protect the public, any additional forces that might be imposed by natural phenomena such as 

earthquakes, tornadoes, flooding conditions, winds, ice, or other local site factors.  
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The RCS pressure boundary is designed as Seismic Category 1 to provide a design margin to 

ensure the capability to perform its function under the conditions of the largest potential ground 

motion or other severe natural phenomena at the site.  

The RCS pressure boundary is capable of accommodating, without exceeding stress limits, the 

static and dynamic loads Imposed as a result of anticipated operational occurrences and design 

basis accidents.  

 

Credible transients which could cause pressure surges have been conservatively designed for by 

reactor protection system trips and by incorporation of relief and safety valves. In addition to 

these considerations, reduction of the probability of a rapidly propagating-type failure is 

accomplished through provisions for control over service temperature and irradiation effects. 

 

Close control and inspection over the selection of RCS pressure boundary materials and the 

fabrication of RCS pressure boundary components are exercised. Provisions are made for 

inspections, testing, and surveillance of critical areas of the pressure boundary to assess the 

structural and leak tight integrity during its service lifetime.  

Materials and components of the RCS are subjected to thorough nondestructive inspection prior 

to operation and a pre-operational hydro test is performed at 1.25 times design pressure. 

Provisions have been made for periodically inspecting, in situ, all areas of relatively high service 

factors.  

 

A reactor vessel material surveillance program is employed utilizing test samples which are 

placed in the reactor vessel and irradiated for designated periods of time, removed, and examined 

to determine changes in material properties. Also, RCS water chemistry control protects against 

corrosion which otherwise might reduce structural integrity during service lifetime. For pipes of 

the size, thickness, and material used in the RCS, detectable leakage will occur before a major 

rupture of the pipe. The RCS pressure boundary is conservatively designed to accommodate the 

system pressures and temperatures attained under all expected modes of plant operation, 

including anticipated transients and abnormal loading conditions, such as seismic conditions, and 

to maintain the stresses within appropriate stress limits. The RCS pressure boundary is protected 

from overpressure by means of pressure-relieving devices  
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7.2 SECOND LEVEL OF DEFENSE 
 

Despite the care taken at the first level of defense, it is prudently anticipated that some failures or 

operating errors could occur during the life of a plant with the potential for safety concern. 

Accordingly, a second level of defense is provided by means of reliable protections systems, 

designed to assure that expected occurrences and off-normal conditions will be detected and 

either arrested or accommodated safely.  

 

The requirements for these protection systems are based on a consideration of a spectrum of 

events that could lead to off-normal operations. Extensive testing programs are carried out to 

verify that the protective systems will function adequately.  

 

An example of a second level of defense system is the reactor protection system. The reactor 

protection system is activated by redundant and Independent instrument channels which translate 

their respective signals into redundant logic channels to automatically initiate a protective action. 

Conservative design practices, adequate safety margins, inspect ability, and redundant detection 

and actuating equipment are incorporated in protection systems to assure effectiveness and 

reliability.  

 

In addition, these systems are designed to be monitored and tested routinely to assure that they 

will operate reliably if and when required.  

 

The reactor protection system is designed to a high degree of reliability and testability to prevent 

or suppress conditions that could result in exceeding acceptable fuel limits. Protection and 

operational reliability is achieved by providing redundant instrument channels for each 

protective function.  

 

 These redundant channels are electrically isolated and physically separated from one another. 

The basic reactor operating design defines an allowable operating region of power, reactor 

coolant pressure, and reactor coolant temperature conditions. If the reactor protection system 

receives signals which are indicative of an approach to operating conditions outside of the 
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allowable operating region, the system actuates alarms, prevents control rod withdrawal, initiates 

load cutback, and/or opens the reactor trip breakers. 

  

The reactor protection system is designed to withstand the effects of the Design Basis 

Earthquake. Typical protection system equipment is subjected to type tests under simulated 

seismic accelerations to demonstrate its ability to perform its functions. Should a failure occur, 

the reactor protection system is designed to fail safe. To meet this requirement, each reactor trip 

channel is designed on the "de-energize to operate" principle; a loss of instrument power to that 

channel causes the system to go into its trip mode. To assure that the reactor protection system 

continues to function properly, the plant Technical Specifications require periodic surveillance, 

testing, and recalibration of each channel. 

 

 7.3 THIRD LEVEL OF DEFENSE 
 

The third level of defense is designed to add further margin by postulating, for design purposes, 

the occurrence of extremely unlikely circumstances. A hypothetical accident is assumed to occur 

and to progress beyond that which would be expected and which could occur only in the event of 

failures in both the first and second levels of defense. This scenario is studied in detail, with a 

deliberate compounding of combinations and sequences of events to make the safeguards 

performance objectives more demanding. 

 

 From an analysis of these Postulated events, a third level of features and equipment is designed 

and incorporated into the plant to safely control such an unlikely event and to protect the public 

health and safety.  

 

For example, the emergency core cooling system (ECCS)* is provided to mitigate the 

consequences of a loss-of-coolant accident (LOCA) even though the first level of defense makes 

such an occurrence highly unlikely. The ECCS is designed to comply with U.S. NRC General 

Design Criteria. The many conservative steps required by these requirements ensures the ECCS a 

very high probability of successful operations, if and when required. The primary function of the 



Analysis of Electric Power Distribution System of a large Nuclear Power Plant 
 

AIKTC Page 85 
 

ECCS is to deliver emergency core cooling in the event that the primary coolant system is 

accidentally depressurized (i.e., a LOCA).  

 

The ECCS limits the fuel cladding temperature below the level allowed by U.S. NRC 

Regulations so that the core will remain intact and in place, with its essential heat transfer 

geometry preserved. This protection is afforded for all pipe break sizes up to and including a 

postulated circumferential rupture and separation of a reactor coolant pipe. The ECCS employs a 

passive system of accumulators, in addition to independent high pressure and low-pressure 

pumping systems.  

 

The passive system of accumulators does not require any external signals or source of power for 

its operation. An accumulator is connected to each of the cold leg pipes of the reactor coolant 

system and provides for the short-term cooling requirements for a large pipe break by injecting 

borated water when RCS pressure falls below accumulator pressure. 

 

 Two independent high pressure pumping systems, each capable of providing the required 

cooling, are provided for small break protection and to maintain water inventory after the 

accumulators have discharged following a large break LOCA. Two independent low-pressure 

pumping systems are provided, each capable of fulfilling long-term cooling requirements. The 

ECCS is designed with sufficient redundancy and diversity of components such that the failure 

of any single active component does not prevent the ECCS from fulfilling its mission. For 

example, the cooling capability of the ECCS would be sufficient to maintain the fuel cladding 

temperatures below allowable limits even if the failure of any single active component occurred 

during a major LOCA. Also, no operator action is required to maintain the ECCS capability in 

the event of a single failure in the system.  

 

 

To meet other criteria, additional conservative actions have been taken concerning the ECCS. 

The ECCS and its components have been designed, fabricated, constructed, tested, and inspected 

under a strict and detailed Quality Assurance Program commensurate with the importance of its 

safety function.  
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The ECCS is designed to applicable codes to provide safety margins to protect against dynamic 

effects. The ECCS equipment has also been designed and fabricated so that it will function 

without failure under the worst conditions of post-accident temperature, pressure, radiation, and 

humidity conditions for the length of time required.  

 

It also requires that a reliable power supply be provided for ECCS operation. This power supply 

is provided through independent connections to the system grid and a redundant source of 

emergency power from independent diesel generators installed on site. Sufficient power for 

operation of the ECCS is provided even with the failure of a single active component, including 

a diesel generator in each of these separate and independent power systems.  

 

The ECCS is subjected to a thorough inspection and testing program conforming to U.S. NRC 

requirements. ECCS components are tested both in the manufacturer's shop and after installation 

to demonstrate performance and reliability.  

 

The ECCS design permits periodic testing of active components for operability and required 

functional performance as required by Technical Specifications. The ECCS delivery capability 

can be tested periodically by recirculation of water to the refueling water storage tank.  
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CHAPTER 8 
 

 

8 PWR nuclear Power Plant Station Black Out 

 

 
8.1 Passive Safety System for Station Black Out 

 

 AC power is not required for safe shutdown   

 

 

 Core cooling provided for long-term safe shutdown state: 

72 hours without operator action 

 

 

 Pressurized water Reactor is designed so that core stays inside of the reactor vessel 

During a severe accidents 

 

 

 After 72 hours with some operator actions to transfer water, core cooling and 

containment cooling are maintained indefinitely  

 

 

 

 PWR spent fuel pool cooling system is capable of providing cooling for spent reactor fuel 

indefinitely, with minimal need  for operator action  

 

 Diagram of passive safety system of PWR Reactor is shown in fig. A 



Analysis of Electric Power Distribution System of a large Nuclear Power Plant 
 

AIKTC Page 88 
 

 

 

 
 

 

  

 

 
 

 

 

 

 

Fig. A 
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8.2 Timeline for Station Blackout 
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8.2.1 Initially at zero time station blackout occurs: 
 
Loss of offsite power occurs at the same time standby diesel generator fails to start, 

resulting in station blackout 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.B 
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8.2.2 1 Minute: 

 

Control rods are inserted in reactor core, terminating the fission process and shutting 

down the reactor. 

 

Reactor core continues to provide decay heat that needs to be removed by cooling. 

Active pumping of cooling water through the spent fuel stops due to loss of power. 

 

The used fuel in spent fuel pool continues to transfer decay heat to the pool of water, 

causing the water to heat up 

 

 

8.2.3 2 Minutes: 

 

The steam generator water level decreases and activates the Passive Core Cooling 

System. 

 

Natural circulation flow started automatically because density difference between the 

cold reactor coolant in the passive heat exchanger and hot fuel in the reactor core. 
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Fig.C 
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8.2.3 2 Hours: 

Reactor decay heat has decreased to one percent of full power. 

 

8.2.4 3 Hours: 

 

The cooling water in spent fuel begins to boil. 

Decay heat from spent fuel is transferred from the water to the steam. 

Any Evaporated water is replaced from supply located in the adjacent cask washdown pit 

which is gravity-fed to spent fuel pool. 

 

 

 Fig.D 
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8.2.5 5 Hours: 

 

The passive heat exchanger has transferred enough decay from the reactor to the in-

containment tank that the water inside the in-containment tank begins to boil. 

Steam produced inside of containment vessel. 

 

 
 

 

 

 

 

 

 

Fig.E 
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8.2.6 6 Hours: 

The instrumentation monitoring system detects the need for containment cooling and 

open valves to start cooling water flow 

Water in the containment cooling tank, located on the roof of shield building, 

automatically drains through gravity and cools the top and sides of the steel containment 

vessel. 

 

8.2.7 6 to  hours: 

The steam generated by in-containment tank transfers the decay heat to the steel of the 

containment vessel through condensation of the steam. 

The water cooling the steel containment vessel removes decay heat through evaporation 

Natural convection airflow passing through the shield building promotes the water coolin 

of containment. 

 

 

8.2.8 >7 hours: 

As the steam from the in-containment tank transfer decay heat to the steel containment 

vessel, steam condense back to water and is redirected back to in-containment tank for 

continued use in removing decay heat  from the reactor core. 

This cooling cycle continued indefinitely. 
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Fig.F 
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8.2.9 36 Hours (Safe Shutdown Condition ): 

 

The reactor has reached safe shutdown condition without operator action and without use 

of active AC power sources, using passive cooling.  

Reactor decay heat generation one half of one percent of full power. 

 

 
 

8.2.10 72 Hours: 

The operator starts the ancillary diesel generators to provide power for post accident 

monitoring, water making pumps and main control room lightning. 

Water makeup pumps are used to transfer water from ancillary water storage tank to 

passive containment cooling water storage tank to maintain water cooling of containment. 

These pumps also transfer water from ancillary storage tank to the spent fuel pool to 

continue its cooling of the spent fuel. 

Fig.G 
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8.2.11 7  Days: 

 

Diesel fuel is replenished in the ancillary generators if power is not restored to the site, 

To maintain ancillary functions. 

Water from other available sources, including on site tank sea water, or other off site 

water supplies is transferred to either ancillary storage water tank or safety related 

makeup water flanged connection in the yard. 

Portable equipment could be used to continue cooling of the containment vessel and the 

spent fuel. 

 Operator can continue transfer water to maintain containment and spent fuel cooling 

indefinitely. 

Reactor decay heat is slightly more than one third of one percent of full power. 

 

 
 

 
Fig. H 
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CHAPTER 9 
 

9 Fault Calculations 

 
9.1 Symmetrical fault calculation on main Generator 

 
9.1.2 

Main generator  

 

1370 MVA, Output voltage = 2400 V to 26000V 

 

Frequency = 50Hz, p.f. = 0.9, Speed= 1500 rpm  

 

Generator is connected to 11.68KV bus , p.u reactance = 0.1 (Assumed) 

 

Taking  SBase = 1400 MVA  

 

Zp.u. =0.1pu 

 

For,  

1370 → 8 pu 

1400→ 8.17 pu 

 

Fault MVA = ௦	ெ
Zp.u.

 

    = 1400/ 8.17 

  = 171.35 MVA 

 

√3 VLISC =171.35 MVA 
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ISC      =  171.35
√3×11.8	

 

 

ISC           = 8.3842 K 

       =  IF 

 

9.1.3  

An 11.8KV bus bar is fed from three synchronous generators having  the following ratings and 

reactances   : 

 20 MVA,X1
’  =0.08 PU 

 60 MVA,X2
’  =0.1PU 

 20 MVA,X3
’  =0.09PU 

A three phase symmetrical fault occurs on the bus bar. Resistance may be neglected. The voltage 

base is 11.8KV & VA base is 60 MVA. 

                 Find: 

1. Fault MVA 

2. Fault current  

 

SOLUTION:                  
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                                  VBASE = 18 KV 

   SBASE = 60 MVA 

1. FAULT MVA  

FAULT MVA= (base MVA / ZPU) 

ZPU for generator 1 is 0.08PU. 

ZPU for generator of 60 MVA is: (60*0.08/20) = 0.24PU. 

ZPU for generator 2 is 0.1PU. 

ZPU for generator 3 is: (60*0.09/20) = 0.27PU. 

 
 

 

Therefore, ZEQ = 1/ (Z1
-1+Z2

-1+Z3
-1) 

      =   1/ (0.24-1+0.1-1+0.27-1)  

                = 0.056PU. 

Their fore, FAULT MVA= (60 MVA/0.056) 

    = 1071.42 MVA. 

2. FAULT CURENT  

            FAULT CURENT = (fault MVA / √3* base KV) 

                    ISC   = (1071.42 / √3* 11.8K) 

                                        ISC       =   52.42KA. 
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9.2 Unsymmetrical Fault Calculation  

                            
 

 

 Group of  identical synchronous motors is connected through  a  Transformers. 

 Motors are rated  600V operate at 89.5% efficiency at full load and unity power factor 

and rated voltage . 

 The sum of the output rating is 4476 KW (6000HP). The reactance in per unit of each 

motor based on its input kilovolt ampere rating are Xd
” =X1= 0.20 , X2= 0.2, X0= 0.04, 

each motor is grounded through reactance of 0.02 per unit. 

 Motors are connected to the 4.16 KV bus through a transformer bank composed of three 

single phase units each of which is rated 2400/ 600V , 2500KVa . The 600V windings  

are in ∆ connected and 2400 in Y connection . Leakage reactance of each transformer is 

10%= 0.1 pu 

  Generator rated 7500 KVA. 416 KV,  with reactance Xd
”=X2= 0.1 pu, X0= 0.05 pu and 

Xn= 0.05 pu 
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FAULT Condition  

 

Each of initial motors is supplying an equal share of a total load 3730 KW(5000HP) and is 

operating at rated voltage 85 % of power factor log and 88% efficiency when single line to 

ground Fault occurs on the low voltage side of the transformer bank  

 

Assuming group of motors as a single unit 

The rating of the equivalent generator as base 7500KVA, 4.16 KV os system Bus  

Since,  

√3 x2400 = 4.16KV  &    3x2500= 7500 KVA (For 3 phase transformer) 

3 phase rating of Transformer is 7500KVA , 4160 Y/∆  

Therefore Base for motor circuit is 7500 KVA , 600V, 

Therefore KVA rating of single motor can be given by 

 

KVA of  1st motor = 
	η%×	p.f

 

   = 4476/ (0.895x 1) 

   = 5000 KVA 

 

Reactances of motor  are given as  

Xd
”=  X1 = 0.20,  X0= 0.04 

 

For  7500 KVA p.u reactance will be  

 

Xd
’’ =X1= X2 = ( 0.2x7500)/ 5000 = 0.3 p.u 

X0 = (0.04x7500)/ 5000= 0.06 p.u  

 

 In zero Sequence network the reactance between neutral ang ground of equivalent motor is  

Xn = 0.02 

 

For 5000 KVA →  3Xn = 3 x 0.02 
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Taking base as 7500 KVA then 

3Xn = 3x 0.02x (7500/5000) = 0.09 p.u. 

For equivalent generator the reactance from neutral to ground 

Xn = 0.05 

3Xn= 3 x 0.05 = 0.15 
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Sequence networks  

                       
 

 Motors are operated at rated voltage equal to the base voltage of the motor, the prefault voltage 

of phase ‘a’ at the fault bus 1, we assume  

Vf =1 p.u 

 

Base current for motor circuit is  

√3 VpIp= 7500KVA  

 

Ip = 7500K/( √3x600) 

    ≈ 7217 A 

I base = 7217 A 

 

Now motor current during fault is  
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 During fault in KW = 3730 KW 

 

KVA rating will be = 3730K/ (0.88x 0.85 ) 

 

Current will be =√3 VpIp= KVA 

  I = 3730/( √3 x 600 x 0.88 x 0.85) 

  I  ≈  4798 A 

Current drawn by the motor through line ‘a’ before fault occurs is  I/Ibase  

  =4798/(7217 < cos-10.85) 

  ≈ 0.665< -31.8˚ 

      Ipf = 0.5646-j0.350 p.u 

 

→ If prefault current is neglected, Eg
’’ & Em

’’ are equal to 1<0˚ p.u 

        Thevenin impedances for each of sequence network as follows  

 

For positive sequence  

Z1
(1)= j(0.1ା	0.1)x	j	0.3	

j(0.1ା	0.1)ାj	0.3	
 

      ≈  j 0.12 p.u 

 

For negative sequence  

Z11
(2)  =   j(0.1ା	0.1)x	j	0.3	

j(0.1ା	0.1)ାj	0.3	
 

               ≈  j 0.12 p.u 

 

 For Zero sequence network  

Z11
(0)= j 0.06 +j0.09  

          

=j 0.15 

 

Fault current in the series connection of the sequence network is 

Ifa
’= 1

0.12ା 0.12ା
0.15
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     = 1 / j0.39 = -j2.56 

Ifa
1= Ifa

2= Ifa
0= -j2.56 

Current in fault = 3 Ifa
0= -j7.692 

 

In the positive sequence network the portion of Ifa
(1) flowing toward P from the transformer is 

found cy current division  

= ି 2.564× 0.3
0.5

 = -j 1.538 p.u 

 

Portion of Ifa flowing through motor toward P 

= ି 2.564× 0.2
0.5

 = -j 1.026p.u 

 

Similarly in case of motor as reactance’s are same Ifa
(2)  from transformer to p is –j1.538 and  Ifa

(2)   

from motor to P is –j 1.026 and in negative sequence network current is shown in figure , which 

is –j2.54 toward P 

To P from transformer in p.u 
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As transformer winding Y(grounded )-∆ connected  

 

Ia
(1)= Ia

(1) < 30˚ and Ia
(2)= Ia

(2) < -30˚ 

Ia
(1)= -j1.538 < 30˚ = 0.769- j1.332 

Ia
(2)  = -j1.538 <-30˚= -0.769-j1.332 

 

From fig Ia
(0) =0 in the zero sequence network. Since, there are no zero sequence on high voltage 

side of transformer 

 

Ia= Ia
(1)+ Ia

(2) 

   = -j2.664 p.u 

 

IB
(1)= a2 Ia

(1)=(1<240˚) 

=-1.538 

 

IB
(2)= a IA

(2)= 1.538 

 

IB= -1.538+1.538 = 0 

 

Ic
(1)= a Ia

(1)= (1< 120)(1.538< -60˚) 

      = 0.769+j1.332 

 

IC
(2)= a2 Ia

(2) 

= -0.769+j1.332 

 

IC = j 2.664 

 

Now by calculating base currents on the two sides of the transformer , we can convert the above 

per unit currents to amperes  
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Base current for motor circuit is calculated previously and its vlue is 7217 A 

 

Base current for high voltage side is  

 = 7500
√3	×	4160	

 

         = 1041 A 

 

Fault current is –j7.692  

 

Current in fault  = IBase  ×	Ipu 

   = 7217 × 7.692  

 

3IFa 
0 = 55,500 A 
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