18/11/15

QP Code: 5558

(3 Hours) [Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

- (2) Answer any three from remaining five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume the data if it is necessary.
- (5) Vector notation must be used wherever necessary.
- Q.1) Attempt any four of the following:- (05-Marks each)

[20]

- (a) Find the charge enclosed in a cube of having side of 2 m with the edges of the cube parallel to axes x, y, and z while origin is at the centre of the cube. The charge density within the cube is $50 x^2 \cos\left(\frac{\pi}{2} y\right) \mu C/m^3$.
- (b) Explain the concept of potential gradient and the relation between electric field and potential.
- (c) If the magnetic field $\overline{H} = (3x \cos \beta + 6z \sin \alpha) \hat{a}_y$. Find the current density \overline{J} if field are invariant with time.
- (d) Discuss the phenomenon of polarization in dielectric medium. Also discuss how it gives rise to bond charge densities.
- (e) For a lossy dielectric material having $\mu_r = 1$, $\epsilon_r = 48$ and $\sigma = 20$ s/m. Calculate the propagation constant at a frequency of 16 GHz.

Q.2) [20]

(a) Given $\overline{D} = 2rz \cos^2 \varphi \ \hat{a}_r - rz \sin \varphi \cos \varphi \ \hat{a}_\varphi + r^2 \cos^2 \varphi \ \hat{a}_z$. Calculate electric flux through the following surfaces.

(i)
$$r = 3$$
, $0 \le z \le 5$. (ii) $z = 0$, $0 \le r \le 3$. [10]

- (b) Obtain E inside, outside solid sphere. A uniform volume charge density $\rho_{\nu} c/m^3$, Distributed in a solid sphere of radius 'a' find expression of E everywhere. [10]
- Q.3) [20]
 - (a) Planes z = 0 and z = 4 carry a current $\overline{K} = -10 \, \hat{a}_x \, A/m$ and $\overline{K} = 10 \, \hat{a}_x \, A/m$ respectively. Find \overline{H} at points (i) P(1,1,1) and (ii) Q(0,-3,10) [10]
 - (b) Obtain an expression for magnetic vector potential in the region surrounding an infinitely long straight filamentary current 'I'. [10]
- Q.4) [20]
 - (a) Derive the Poission's and Laplace equation. And the one dimensional Laplace's equation is as $\frac{\partial^2 V}{\partial X^2} = 0$, The boundary conditions are V = 9 at X = 1 and V = 0 at X = 10. Find the potential and show the variation of V with respect to X. [10]

TURN OVER

(b)	A potential field is given as $V = 100 e^{-5x} \sin 3y \cos 4z$ volts. Let point $P(0)$	
	$\frac{\pi}{12}$, $\frac{\pi}{24}$) be located at a conductor free space boundary. At point P, find the magnitude	des
	of (i) V (ii) P (iii) P (iiii) P (iiii) P (iiii) P (iiii) P (iiii) P (iiii) P (iiiii) P (iiiii) P (iiiiii) P (iiiiiiii) P (iiiiiiiiii	[0]
Q.5)	[2	20]
(a)	Derive the set of Maxwell's equations for static fields and harmonically time varying	ing [0]
(b)	Verify whether the following fields	-1
	$\bar{E}=(2\cos x\sin t)\hat{a}_y$ and $\bar{H}=\left(\frac{2}{\mu_0}\cos x\cos t\right)\hat{a}_z$. Satisfy Maxwell's equation	in
	free space.	[0]
Q.6)		20]
(a)	Formulate the wave equation from Maxwell's equations. Solve it for perfect conducting media.	tly .0]
	The magnetic field intensity of a uniform plane wave in air is 20 $^{A}/_{m}$ along t	the
	\hat{a}_y direction. The wave is propagating in the \hat{a}_z direction at a frequency of 2 $10^9 rad/_{SEC}$. Find the	×
	(i) Westelm of (ii) France (iii) Part 1 1 (iv)	.0]