EE/CBSas/sem-XI/Em-III/ 26/11/2015

3.00 to 6.00 pm

QP Code: 6299

(3 Hours)

[Total Marks: 80

N.B.1: Q No 1 is compulsory

- 2: Attempt any three from the remaining questions.
- 3. Full marks of each question is indicated there ahead
- 4. Assume data if necessary & justify

QI	a b	Explain in brief hunting in synchronous motor	5 5
	C	Explain in brief steady state analysis of synchronous machine	5
	d	Draw & explain the primitive representation of Induction Machine	5
Q2	a	Derive an expression for power developed in salient pole machine acting as a Generator. What are the components of power?	10 -
	b _.	Explain the principle of operation of the synchronous motor and draw phasor diagram of salient pole synchronous motor for lagging & leading power factor	10
Q3	a	A 400 V, 50 kVA, 50 Hz, 3-phase star-connected alternator has the armature resistance of 0,1 Ω per phase. An excitation of 25 A produces on open circuit EMF of	10
		130 V(line). The same excitation produces a current of 90 A on short circuit, calculate (a) the synchronous impedance & reactance. (b) the full load regulation of the alternator for (i) 0.866 lagging power factor (ii) unity power factor.	
	b.	Derive the condition for maximum power output of synchronous motor and hence deduce an expression for maximum power output.	10
Q4	а	Explain the terms, direct-axis synchronous reactance & quadrature-axis synchronous reactance of a salient pole alternator and hence describe the slip test method for the measurement of X _d and X _q of synchronous machines.	10
	b.	A 3-phase 40 kW, 400 V, 50 Hz star-connected synchronous motor has a full load efficiency of 90%. The synchronous impedance of the motor is $(0.25+j12)\Omega$ per	10
		phase. If the excitation of the motor is adjusted to give a leading power factor of 0.8, calculate the induced EMF and total mechanical power developed at full load.	
Q5	a.	Explain the effect of changing excitation on output power of the alternator connected to infinite bus.	10
	b.	Explain excitation circle and power circle in synchronous motor	10
Q6		Write Short Notes on	20
	a.	Starting of synchronous motor against high torque	
	b	Ideal synchronous machine	