AE-I

20/11/15

Q.P. Code: 5079

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions out of the remaining five questions.
- (3) Assume suitable data wherever required.
- 1. Attempt any four.

20

- (a) Draw Input and Output characteristics of BJT in common emitter configuration.
- (b) Draw small signal hybrid  $\pi$  equivalent circuit for npn transistor.
- (c) Explain effect of temperature on JFET and derive equation for zero current drift.
- (d) Calculate I<sub>B</sub>, I<sub>C</sub> & V<sub>CE</sub> for common emitter circuit.

$$Rc^{\frac{3}{2}2K}$$
 $Rc^{\frac{3}{2}2K}$ 
 $Rc^{\frac{3}{2}2K}$ 
 $Rc^{\frac{3}{2}2K}$ 
 $Rc^{\frac{3}{2}2K}$ 
 $Rc^{\frac{3}{2}2K}$ 
 $Rc^{\frac{3}{2}2K}$ 

(e) Find I<sub>B</sub>, I<sub>C</sub> & V<sub>CE</sub> for following circuit.

$$\frac{1}{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{B}^{2}\int_{$$

TURN OVER

2. (a) Draw output waveform for clamper and clipper circuits.

10





- (b) Explain construction & characteristics of n channel Ehancement MOSFET. 10 Draw transfer characteristics & drain characteristics.
- 3. (a) For JFET amplifier shown below, Calculate Av, Zi, Zo



(b) For the circuit shown below, calculate  $I_{DQ}$  &  $V_{DSQ}$ . It is given that  $I_{D(ON)} = 6$  mA,  $V_{GS(ON)} = 8$  V. Vth = 3 V



[TURN OVER

10

10

- 4. (a) Explain the working of Wein Bridge Oscillator. Derive the expression for 10 frequency of oscillation for sustained oscillations.
  - (b) Calculate voltage gain of FET amplifier.



$$Y_{OS} = 40 \mu s$$
  
 $I_{DSS} = 8 \text{ mA}$   
 $V_{GS} \text{ off} = -4 V$ 

- 5. (a) Draw & explain energy band diagram of MOS capacitor operating in 10
  - (i) Accumulation
  - (ii) Depletion
  - (iii) Inversion mode
  - (b) Draw emitter follower circuit and derive an expression for voltage gain Av. 10
- 6. (a) Draw circuit diagram for phase shift oscillator & derive an expression for 10 frequency of oscillation.
  - (b) Write short notes on any two.
    - (i) Photodiodes
    - (ii) LC oscillators
    - (iii) Transistor as a switch
    - (iv) Schottky diode.