Q.P. Code: 1980

	-	(3 Hours) [Total Marks:	100
1	V.B. :	 Question No. 1 is compulsory. Attempt any four questions out of the remaining five questions. Draw diagrams wherever necessary. Figures to the right indicate full marks. 	
1.	Atte	empt any 4	
	(a) In Digital Communication Eb/No is the parameter considered rather than S/No. Justify.	5
	(b) Explain Shannon Hartley Theorem.	5
		c) Derive the condition for maximum entropy of a source. How does it vary with probability?	5
		 d) Assess the different parameters for choosing a PCM waveform type. e) Compare - 	5
		(i) Systematic and Non-Systematic Codes(ii) 16-PSK and 16-QAM	
2.	(a)	Draw the block diagram of OQPSK transmitter. A bit stream $b(t) = 001011011010$ is to be transmitted. Sketch the waveform at the o/p of each block.	8
	(b)	Explain the transmitter and receiver of a DEPSK system with a block diagram. Interpret why errors occur in pairs in a DEPSK system? Support with a suitable example.	8
	(c)	Describe the properties of Matched Filter.	4
3.	(a)	Derive expression for probability of error for an Optimum Filter. Hence derive the Transfer Function of an Optimum Filter.	10
	(b)	Explain the concept of QAM. Draw and Explain QAM transmitter and receiver.	10
1.	(a)	For K=4, $1/3$ rate convolution encoder, the generator vectors are given as $g_1 = (1000)$, $g_2 = (1111)$ and $g_3 = (1011)$. Draw the block diagram of the encoder. Draw the code tree for the same. If the input bit stream to the encoder is given by the 4 bit sequence 1011, find the coded output bit stream.	10
	(b)	The generator polynomial for a $(7,4)$ systematic cyclic code is $x^3 + x^2 + 1$. Find the code polynomial for message vector 1111 and hence the coded vector. Assuming it suffers transmission error, find the syndrome at the receiver.	10

[TURN OVER

٥.	(a)	A DMS S produces the symbols A, B, C and D with probabilities 0.4, 0.25,	10
		0.15 and 0.20 respectively.	
		(i) Justify whether the output of this source can be compressed so	
		that the average code word length is 2 bits.	
		(ii) Create a Huffman code for this source and calculate its efficiency.	
	(b)		10
		binary encoder.	
		(i) Prepare the encoder and decoder output without precoding.	
		(ii) Suppose during transmission, the 3rd bit is in error. Construct the	
		receiver output.	
		(iii) Recommend a technique to avoid error propagation and illustrate	
		how this can be achieved.	
,			
6.	(a)	Derive the PSD for a Unipolar NRZ waveform.	10
	(b)	For a (6,3) systematic linear code, the parity check digits are given as	10
		$C_4 = d_1 + d_2 + d_3$	
١.		$C_5 = d_1 + d_2$	
		$C_6 = d_1 + d_3$	
		(i) Find the generator matrix.	
		(ii) Obtain the code vectors.	
		(iii) Determine error detection and correction capabilities.	
		(iv) Decode received word 000111.	
-	***		30
1.		te a short note on - (any 4)	20
		i) Veterbi Decoding	
		i) Lempel Ziv Coding	
		i) Equalization	
) BCH Codes	
	(1	y) Eye Pattern	