TE-SEM-V-OU-EXTC

11/2/18

OP Code: 1809

(Old Course)

(3 Hours)

Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) In total solve five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- 1. Attempt any Four questions.
 - (1) Define the Transfer function.
 - (2) Define type and order of a system,
 - (3) Find the step response of a system if its impulse response in 5e-10t
 - (4) State the Nyquist stability criterion.
 - (5) What is the need for a compensator.
 - (6) Comment on relative stability.
 - (7) Define state model.
- 10 2. (a) Find the transfer function of the system given below by block diagram reduction method and verify it by signal slow graph.

(b) The overall transfer function of a unity feed back system is given by

10

$$\frac{C(S)}{R(S)} = \frac{10}{s^2 + 6s + 10}$$

Find i) The position, velocity and acceleration error constants.

 $G_s = \frac{36}{s(s+0.72)}$ Determine the 10 3. (a) For a unity feed back system back

characteristics equation and hence calculate

- 1) Natural Frequency ii) Damping ratio iii) Peak time
- iv) Setting time (2%) v) Peak over shoot

TURN OVER

20

(b) Sketch bode plot for the given transfer function and determine the phase margin and gain margin.

$$G_s = \frac{75(1+0.2s)}{s(s^2+16s+100)}$$

- 4. (a) Use Routh-Hurwitz criterion and comment on the stability of the system of characteristics equation $s^5+4s^4+8s^3+8s^2+7s+4=0$
 - (b) Obtain the Root Locus diagram for a Unity feed back system with the open loop transfer function.

$$G(s) = \frac{K}{s(s^2 + 6s + 10)}$$

5. (a) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{s(1+s^2)}$

Sketch the polar plot and determine the gain margin and phase margin.

(b) Construct Nyquist piot for a feedback control system whose open loop transfer function is given by

$$G(s)H(s) = \frac{2}{s(1-2s)}$$

- 6. (a) Define the following term related to 2nd order system subjected to unit step J/P

 a) Rise Time b) Peak Time c) Peak overshoot
 - (b) Define gain and phase margin of the system. Comment on the stability of the system based on gain and phase margin.
- 7. Write short notes on any Two
 - a) Stepper Motor
 - b) Synchros
 - c) Mason's Gain Formula