22/12/15

QP Code: 2466

(3 Hours)

[Total Marks:100]

- Question No 1 is compulsory.
- · Answer any four out of remaining six questions.
- Assumptions made should be clearly stated.
- Assume suitable data wherever required, but justify the same.

Write short notes on any four of the following:

[20]

- (a) Economic loading of power plant
- (b) Causes and effects of acid rain
- (c) Benefits of cogeneration
- (d) Mechanical Dust collector.
- (e) Desulphurisation of flue gases.

a) (i) Write a note on current power scenario in Mambai [5]

(ii) Explain in brief types of power tariff.

[5]

A power station supplies the following loads to the consumers:

[10]

Time in Hrs	0-6	6-10	10-12	12-16	16-20	20-22	22-24
Load (MW)	30	70	90	60	100	80	60

i) Draw the load curve and estimate the load factor of the plant. ii) What is the load factor of a standby equipment of 30 MW capacity if it takes up all loads above 70 MW. What is its use factor?

a) Explain with a neat sketch the operation of Boiling Water Reactor (BWR).

[10]

b) A generating unit of 10 MW capacity supplies the following loads.

[10]

(i) Domestic consumers with a maximum demand of 6 MW at a load factor of 20% (ii) Small industrial load with a maximum demand of 3.6 MW at a load factor of 50%.(iii) Street light load with a maximum demand of 400 kW at a load factor of 30%.

The capital cost of the plant is Rs10000/kW and the total running cost is Rs 36,00,000 lac per year. Annual rate of interest and depreciation on capital cost is 10%. Find the overall cost of energy per kWh for each type of consumer

[TURN OVER

QP-Con. 12330-15.

b)

- 4 a) Explain in brief the effect of inter cooling, reheating and regeneration on the [8] performance of Gas Turbine Power plant.
 - b) At the design speed the following data apply to a gas turbine set employing the regenerator: Isentropic efficiency of compressor = 75%, ii) isentropic efficiency of the turbine = 85%, iii) combustion efficiency = 98 iv) mass flow = 200 kg/s v) pressure ratio=6:1, regenerator effectiveness = 75%, vi) maximum cycle temperature = 1000K. The ambient air temperature and pressure are 15°C and 1.013 bar respectively. Calculate: (i) The net power output (ii) Specific fuel consumption (iii) Thermal efficiency of the cycle. Take the calorific value of fuel as 43125 kJ/kg and assume no pressure-loss in regenerator and combustion chamber. Assume $c_p = 1.005$ kJ/kgK and $\gamma = 1.4$ throughout the cycle.
- a) Explain in brief the various parameters to be considered for selection of site for [8] hydel power plant.
 - b) Following observations were made during a trial on single cylinder 2 stroke [12] diesel engine.:

Cylinder Diameter = 210 mm; Stroke Length = 290 mm; Speed = 360 RPM; Net brake load = 680 N; Effective Brake diameter = 1 m; m.e.p = 3 bar; Fuel used = 1.56 kg in 20 minutes; Calorific value of fuel = 44000 kJ/kg; Cooling Water circulated = 160 kg in 20 min; Air fuel ratio = 30:1; Exhaust gas temperature = 310 ° C; Ambient temperature = 27 ° C; Rise in cooling water temperature = 25 ° C; Steam formed per kg of fuel in the exhaust = 1.3kg; Specific heat of steam in exhaust = 2.093kJ/kg K; Specific Heat of dry exhaust gases = 1.01kJ/kgK; Latent heat of steam = 2257.9kJ/kg.

Calculate: i) Mechanical efficiency ii) Brake thermal efficiency and iii) Draw up heat balance sheet on second basis.

- 6 a) What are advantages of Fluidised Bed Combustion. Explain with a neat sketch the [10] operation of Atmospheric Fluidised Bed Boiler.
 - b) Explain in brief the methods of radioactive waste disposal [10]
- 7 a) What are the different subsystems of a diesel power plant. Explain with a neat [10 sketch the layout of a diesel power plant,
 - b) Write notes on the following: [10]
 - (i) cooling system for diesel power plant.
 - (ii) Measurement of rainfall.

_____X x x _____