BE-EE-SemVII- CBSGS

23/11/15 QP Code: 5857

		(3 Hours) [Total Ma	rks:	80
VC	OTE			
	1.Questi	on number 1 is compulsory		
	2.Attem	pt any three from the remaining		
		s to right indicates full marks		
	_	ne suitable data if necessary and mention the same		
	1.1 ,555 611	io ballable data il licocobal y alla illeration alle ballic		_0
		Attempt any four of the following:-	20	V
	a)	What are the types of buses & explain need of slack bus in load	05	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	۵)	flow studies	Maring .	
	b)	For the three bus system determine the magnitude of shunt	20 05 05	
	0)	suscepatance of the line connecting bus 1 and 2 for following		
		Y _{BUS}		
		5 10 -13		
	c)	Define power system stability and classify it on the basis of nature	05	
		of disturbance		
	d)	State assumptions made in transient stability studies	05	
	e)	Write difference between GS and NR, methods of load flow	05	
		studies		
2.		· · · · · · · · · · · · · · · · · · ·	20	
	a)	Explain Y _{BUS} formation by singular transformation	.10	
	b)	For the network shown in figure obtain the complex bus bar voltage at	10	
		bus 2 at the end of the second iteration. Use the Gauss seidal method.		
		Line impedances are given in pu Given Bus 1 is slack bus with $V_1 = 1 < 0$		
		$P_2 + j Q_2 = -5.6 + j 1.46 \text{ Assume} V_3^0 = 1.02 < 0 V_2^0 = 1 < 0$		
		$P_2 + j Q_2 = -5.6 + j 1.46 \text{ Assume } V_3^0 = 1.02 < 0 \qquad V_2^0 = 1 < 0$		
		0.04 - 0.02 + 0.03		
3.			.20	
	a)	The fuel cost functions for three thermal plant in Rs/h are given	10	
		by		
		$C_1 = 500 + 5.3 P_1 + 0.004 P_1^2$ $C_2 = 400 + 5.5 P_2 + 0.006 P_2^2$		
		$C_2=400+5.5P_2+0.006P_2^2$		
		$C_3=200+5.8P_3+0.009P_3^2$		
		Where P ₁ , P ₂ and P ₃ are in MW. The total load P _D is 800 MW.		
		Neglecting transmission line losses and generator limits, find the		
	1.	optimal dispatch and the total cost in Rs/h		
	b)	Derive formula for Bmn coefficients in transmission loss formula	10	
4.	E. E. San		20	
	a) 🔷	Find the steady state power limit of a system consisting of a	10	
	1/1/	generator equivalent reactance 0.5 p.u connected to an infinite bus		
1	Carlo Carlo	through a series reactance of 1.0 p.u. The terminal voltage of the		
The stand	1	generator is held at 1.2 p.u and the voltage of the infinite bus is 1		

MD-Con. 7985 -15.

[TURN OVER

QP Code: 5857

2

	b)	Derive swing equation of power system	10	
5.			20	
	a)	Draw and explain turbine speed governor system and explain	10	
	b)	Explain dynamic response of change in frequency for step change	10	
		in load of an isolated power system. How dynamic response		
		changes with integral control action		0
6.		Write short notes on (any two)	20	V
	a)	power pool and its advantages and disadvantages	10	
	b)	Surge impedance and surge impedance loading	10	
	c)	AGC in restructured power system	010	

Course: B.E. (Sem-VII) (REV. -2012) (CBSGS) (Electrical Engg.)(Prog-T2927)

Code: 5857

Correction:

Q 5 a) is draw and explain turbine speed governor system Students are supposed to draw turbine speed governor system and explain 4 major parts namely speed changer, linkage mechanism, fly ball system and hydraulic amplifier

Query Update time: 23/11/2015 01:05 PM