(22_!)

SE-Sem-IV-CBUS- computers

TCS

17/12/15

5485

Q.P. Code:

(3 Hours)

[Total Marks: 100

N.B.: (1) Question Number 1 is compulsory.

- (2) Attempt any three questions out of remaining five questions.
- (3) Assumptions made should be clearly stated.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data whenever required but justify the same.
- 1. (a) Consider the following grammar $G = (V, T, P, S), V = \{S, X\}, T \{0, 1\}$ and 5 productions P are

 $S \to 0 \mid 0X1 \mid 01S1$

 $X \rightarrow 0XX1 \mid 1S$

S is start symbol. Show that above grammar is ambiguous.

- (b) State and prove the halting problem.
- (c) Convert following ε-NFA to NFA without ε.

5

(d) Prove that Language $L = \{0^n 10^n \text{ for } n = 0, 1, 2, \dots \}$ is not regular.

5

2. (a) Consider the following grammar $G = (V, T, P, S), V = \{S, X, Y\}, T \{a, b\}$ and productions P are

 $S \rightarrow XYX$

 $X\rightarrow aX \mid \epsilon$

Y→bY ε

Convert this grammar in Chomsky Normal Form (CNF).

- (b) Design DPDA to accept language L={ $x \in \{a, b\}^* \mid N_a(x) > N_b(x) \}$, 10 $N_a(x) > N_b(x)$ means number of a's are greater than number of b's in string x.
- 3. (a) Design Turing machine to accept the language L = set of strings with equal number of a's and b's.
 - (b) Design the DFA to accept the language containing all the strings over 10
 Σ = {a, b, c} that starts and ends with different symbols.

TURN OVER

Q.P. Code:

2

4.	(a)	Design 1	Moore Machine for the input from $(0+1+2)$ * which print the residue	10
		modulo	5 of the input treated as ternary number.	
	(b)	State an	d prove pumping lemma for context free languages.	10
_	(-)		the Callegian and into Christs automate	2
5.	(a)		the following grammar into finite automata.) 3
		$S \rightarrow aX$	bY a b	
		$X \rightarrow aS$	bY b	
		$Y \rightarrow aX$	Sd Sd	
	(b)	Compar	e recursive and recursively enumerable languages.	5
	(c)	State an	d prove Rice's theorem	10
6.	(a)	Write regular expression for the following languages.		5
		(i)	language containing all the strings in which every pair of adjacent	
			a's appears before any pair of adjacent bis, over the alphabet	
	•		$\Sigma = \{a, b\}.$	
		(ii)	language containing all the strings in which all possible combination	
			of a's and b's is present but strings does not have two consecutive	
			a^{ts} , over the alphabet Σ {a, b}.	
	(b)	Write short note on "Universal Turing Machine".		
	(c)	Explain variations and equivalences of Turing machine		