SE-Sem-IV-Brechical-CBGS ADIC

17/12/15

5476

QP Code:

Time: 3 Hours

Max. Marks: 80

NOTE:

1	Ougation	MIL	1:0	0000001100	200 1
1.	Question	INO.	1 15	compulso	ıу.

- 2. Solve any Three questions from remaining five.
- 3. Assume suitable data wherever necessary.

Q1	a).	State and prove Demorgans theorem.	5
	b)	List ideal characteristics of OPAMP.	3
	c)	List ideal characteristics of OPAMP. Convert JK to T flip flop.	5
	d) ,	Explain in brief types of registers.	5
Q2	a)	Explain the operation of Astable multivibrator using IC 555. Draw the circuit diagram and waveforms.	10
	b)	Explain with the help of circuit diagram the operation of an OPAMP as inverting amplifier. Derive expression for the voltage gain of this amplifier	10
Q3	a)	Design a mod-10 asynchronous counter using JK flip flop	10
	b)	Minimize the expression using K map and implement using NOR gates only. $F = \Sigma(0,5,9,12,13,14,15)$	10
Q4	a)	With the help of neat diagram explain the operation of R-2R ladder type DAC.	10
	b)	Explain ECL logic family.	10
Q5	a)	Implement following expression using (i) 8:1 Mux (ii) 4:1 Mux $F(A,B,C) = \Sigma(0,2,5,6,7)$	10
,	b)	Explain ideal and practical integrator	10
Q6	a)	Design and implement 3bit gray to binary code converter.	10
	b)	Derive the filter gain of first order low pass filter and draw its frequency response characteristics.	10