(3 Hours)

[Total Marks: 100

- N.B.: (1) Question No.1 is compulsory.
 - (2) Answer any four out of reamaining six questions.
 - (3) Assume any suitable data wherever necessary.

1. a) Express
$$\frac{(\sqrt{3}-i)^7}{(1+i)^{10}}$$
 in the form of P+i Q.

- b) Find y_n if $y = \sin^2\theta \cos^3\theta$
- c) Prove that $ax(\bar{b} \times \bar{c}) + \bar{b}x(\bar{c} \times \bar{a}) + \bar{c}x(\bar{a} \times \bar{b}) = 0$
- d) Prove that $\tan^{-1}x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots$
- e) If $u = (1-2xy+y^2)^{-1/2}$ prove that $x \frac{\partial u}{\partial y} y \frac{\partial u}{\partial y} = y^2 u^3$
 - f) Find the point upon the plane ax + by + cz = P at which the function $f = x^2 + y^2 + z^2$ has a minimum value and find this minimum f.
- 2. a) Find all the roots of x^{12} 1 = 0 and identify the roots which also are the roots of x^4 x^2 + 1 = 0
 - b) if $x \frac{1}{x} = 2i\sin\theta$; $y \frac{1}{y} = 2i\sin\phi$
 - & $z \frac{1}{z} = 2i\sin\psi$, prove that $xyz + \frac{1}{xyz} = 2\cos(\theta + \phi + \psi)$
 - c) If z = f(u) ishomogeneous function in two variables x and y. Prove that

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)}$$

Hence verify the theorem for the function $u = log\left(\frac{x^2 + y^2}{xy}\right)$

3. a) Find if LMVT is applicable to the function

$$f(x) = x + \frac{1}{x}$$
 on [1,3]

TURN OVER

8

6

b) Verify the result
$$\frac{d}{dt}(\vec{a} \times \vec{b}) = \vec{a} \times \frac{d\vec{b}}{dt} + \frac{d\vec{a}}{dt} \times \vec{b}$$
for $\vec{a} = 5t^2 \hat{i} + t \hat{j} - t^3 \hat{k}$

$$\vec{b} = \sin t \hat{i} - \cos t \hat{j} - 0 \hat{k}$$

- c) Prove that $e^{\cos^{-1}x} = e^{\pi/2} \left[1 x + \frac{x^2}{2} \frac{x^3}{3} + \dots \right]$
- 4. a) If $\sin h(\theta + i\phi) = \cos \alpha + i \sin \alpha$ prove that $\sin h^4\theta = \cos^2 \alpha = \cos^4 \phi$
 - b) Test the convergence of $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{4^n + 5^n}$
 - c) If $y = e^{a \sin^{-1} x}$ prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2+a^2)y_n = 0$ find $y_n(0)$
- 5. a) If $y = x \log(x+1)$ prove that $y_n = \frac{(-1)^{n-2}(n-2)(x+n)}{(x+1)^n}$
 - b) Using L'Hospitals' rule evaluate $\lim_{x \to 0} \frac{1}{x} (1 x \cot x)$
 - c) Find the directional derivative of $f = \frac{1}{(x^2 + y^2 + z^2)^{1/2}}$ at P(1, 1, 1) in the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}$
- 6. a) If $u = \sin^{-1}(x/y) + \tan^{-1}(y/x)$ Find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$
 - e) A fluid motion is given by $\vec{v} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$ show that the motion is irrotational
 - c) Prove that $\tan^{-1}(e^{i\theta}) = \frac{n\pi}{2} + \frac{\pi}{4}$ $= \log \tan \left(\frac{\pi}{4} \frac{\theta}{2}\right)$

TURN OVER

- 7. a) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
 - b) Find $[(3.82)^2 + 2(2.1)^3]^{1/5}$ approximately by using the theory of approximation.
 - c) (i) Separate $(\sqrt{i})^i$ into real and imaginary parts.
 - (ii) Find the general value of $Log(1+i\sqrt{3})+Log(1-i\sqrt{3})$

QP-Con.9503-15.