22/12/15

QP Code: 5535

(3 Hours)

[Total Marks :80

N.B.: (1) Question No.1 is compulsory

- (2) Attempt any three questions out of the remaining questions.
- (3) Assume data whenever necessary.
- (4) Figures to the right indicate full marks.
- (a) Define rise time.
 (b) Define gain margin and phase margin.
 (c) What are the difficulities encountered in applying Routh stability criterion?
 (d) Find out response of give system for a unit step I/P

2. (a) Obtain the transfer function of the mechanical systems shown in Fig. 11a (i). 10

(b) Draw a signal flow graph for the system shown in fig 11a (ii) and hence obtain the transfer function using Mason's gain formula.

[TURN OVER

- 3. (a) Derive the expression for step response of second-order under damped system.
 - (b) Find the impulse response of the second order system whose transfer function

$$G(s) = \frac{9}{(s^2 + 4s + 9)}$$

- 4. (a) A unity feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+10)}$ Determine the gain K so that the system will have a damping ratio of 0.5. For this value of K determine settling time peak over shoot and time to peak over shoot for a unit step input.
 - (b) An unity feedback system is given as $G(s) = \frac{1}{s(s+1)}$ The input to the system is described by $r(t) = 4 + 6t + 2t^2$. Find the generalized error coefficients and the steady state error.
- 5. (a) Sketch the Bedplate showing the magnitude in dB and phase angle in degrees as a function of log frequency for the transfer function given by $G(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$ and hence determine the gain margin and the
 - phase margin of the system.

 (b) Sketch the root locus for a unity feedback system with open loop transfer function $G(s) = \frac{K}{s(s^2 + 8s + 32)}$.
- 6. (a) Using Routh-Hurwitz criterion for the unity feedback system with open loop transfer function $G(s) = \frac{K}{s(s+1)(s+2)(s+5)}$ find
 - (i) the range of k for stability
 - (ii) the value of k for marginally stable
 - (iii) the actual location of the closed loop poles when the system is marginally stable.
 - (b) Explain controllably and observably.